精英家教网 > 高中数学 > 题目详情
20.袋中共有10个大小相同的黑球和白球,若从袋中任意摸出2个球,至少有一个黑球的概率为$\frac{7}{9}$.
(1)求白球的个数;
(2)现从中不放回地取球,每次取1个球,取2次,已知第二次取得白球,求第一次取得黑球的概率.

分析 (1)设袋中白球的个数为x,利用对立事件概率计算公式列出方程,由此能求出白球个数.
(2)利用互斥事件的概率公式求得第二次取得白球的概率,
再利用条件概率公式,求出第二次取得白球的条件下,第一次取得黑球的概率.

解答 解:(1)设袋中白球的个数为x,
∵从袋中任意摸出2个球,至少得到一个白球的概率是$\frac{7}{9}$,
∴1-$\frac{{C}_{10-x}^{2}}{{C}_{10}^{2}}$=$\frac{7}{9}$,
又x∈N,解得x=5,
∴白球有5个;
(2)设A“第1次取到黑球”,B“第2次取到白球”,
则AB是“第1次取到黑球且第2次取到白球”,
∴P(B)=$\frac{5}{10}$×$\frac{5}{9}$+$\frac{5}{10}$×$\frac{4}{9}$=$\frac{1}{2}$;
由条件概率公式知:
P(A/B)=$\frac{P(AB)}{P(B)}$=$\frac{\frac{5}{10}×\frac{5}{9}}{\frac{1}{2}}$=$\frac{5}{9}$,
即第二次取到白球时,第一次取到黑球的概率是$\frac{5}{9}$.

点评 本题考查了对立事件的概率以及互斥事件与条件概率的计算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.将函数$f(x)=2sin({3x+\frac{π}{3}})$的图象向右平移θ个单位(θ>0)后,所得图象关于y轴对称,则θ的最小值为(  )
A.$\frac{5π}{6}$B.$\frac{5π}{18}$C.$\frac{π}{6}$D.$\frac{π}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数$f(x)=-\frac{1}{3}{x^3}+2a{x^2}-3{a^2}x+\frac{1}{3}a$(0<a<1)
(1)若函数f(x)的单调区间;
(2)若当x∈[a,2]时,恒有f(x)≤0成立,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a<0,角α的终边经过点P(3a,-4a),则sinα+2cosα的值等于(  )
A.$\frac{2}{5}$B.$-\frac{2}{5}$C.$\frac{1}{5}$D.$-\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数y=acosx+b的最大值为1,最小值为-3,试确定$f(x)=bsin(ax+\frac{π}{3})$的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.为了得到函数y=9×3x+5的图象,可以把函数y=3x的图象(  )
A.向左平移9个单位长度,再向上平移5个单位长度
B.向右平移9个单位长度,再向下平移5个单位长度
C.向左平移2个单位长度,再向上平移5个单位长度
D.向右平移2个单位长度,再向下平移5个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)在x=a处的导数为A,则$\lim_{△x→0}\frac{f(a+4△x)-f(a+5△x)}{△x}$=(  )
A.-AB.AC.2AD.-2A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.为推进党内开展“两学一做”活动,现进行问卷调查,某党支部有正式党员6名,其中4名男性,2名女性,有预备党员2名,均为女性,从这8名党员中随机选择4名进行问卷调查.
(Ⅰ)设A为事件“选出的四人中恰有两名女性,且这两名女性不都是预备党员”,求事件A的概率
(Ⅱ)设X为选出的4人中男党员的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数f(x)=lnx-x2+x的单调减区间是(1,+∞).

查看答案和解析>>

同步练习册答案