【题目】在平面直角坐标系中,已知抛物线:,过抛物线焦点且与轴垂直的直线与抛物线相交于、两点,且的周长为.
(1)求抛物线的方程;
(2)若直线过焦点且与抛物线相交于、两点,过点、分别作抛物线的切线、,切线与相交于点,求:的值.
【答案】(1);(2)0.
【解析】
(1)先求得A,B两点坐标,利用计算的周长可得p,进而求得抛物线方程;
(2)利用导数的几何意义求得切线与的方程,联立直线与抛物线方程,利用韦达定理及与的交点P,可得,再利用焦半径公式求得,可得结果.
(1)由题意知焦点的坐标为,将代入抛物线的方程可求得点、的坐标分别为、,
有,,可得的周长为,有,得.
故抛物线的方程为.
(2)由(1)知抛物线的方程可化为,求导可得.
设点、的坐标分别为、.
设直线的方程为(直线的斜率显然存在).
联立方程消去整理为:,可得.
有,.
可得直线的方程为,整理为.
同理直线的方程为.
联立方程,解得,则点的坐标为.
由抛物线的几何性质知,,
.
有 .
∴.
科目:高中数学 来源: 题型:
【题目】某同学假期社会实践活动选定的课题是“节约用水研究”.为此他购买了电子节水阀,并记录了家庭未使用电子节水阀20天的日用水量数据(单位:)和使用了电子节水阀20天的日用水量数据,并利用所学的《统计学》知识得到了未使用电子节水阀20天的日平均用水量为0.48,使用了电子节水阀20天的日用水量数据的频率分布直方图如下图:
(1)试估计该家庭使用电子节水阀后,日用水量小于0.35的概率;
(2)估计该家庭使用电子节水阀后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在工业生产中,对一正三角形薄钢板(厚度不计)进行裁剪可以得到一种梯形钢板零件,现有一边长为3(单位:米)的正三角形钢板(如图),沿平行于边的直线将剪去,得到所需的梯形钢材,记这个梯形钢板的周长为 (单位:米),面积为(单位:平方米).
(1)求梯形的面积关于它的周长的函数关系式;
(2)若在生产中,梯形的面积与周长之比(即)达到最大值时,零件才能符合使用要求,试确定这个梯形的周长为多时,该零件才可以在生产中使用?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.
根据频率分布直方图,估计这50名同学的数学平均成绩;
用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一艘轮船在航行中燃料费和它的速度的立方成正比.已知速度为每小时10千米时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问轮船的速度是多少时,航行1千米所需的费用总和最少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司有男性职工64名,一次体检后,将他们的体重(单位:kg)分组为:,,,,,绘制出频率分布直方图如图,图中从左到右的前3个小组的频率之比为.
(1)求这64名男职工中,体重小于60kg的人数;
(2)从体重在kg范围的男职工中用分层抽样的方法选取6名,再从这6名男职工中随机选取2名,记“至少有一名男职工体重大于65kg”为事件,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点在圆柱的底面上,,,,分别为,的直径,且.若圆柱的体积,,,回答下列问题:
(1)求三棱锥的体积.
(2)在线段AP上是否存在一点M,使异面直线OM与所成的角的余弦值为?若存在,请指出点M的位置,并证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正△ABC中,点D,E分别在边AC, AB上,且AD=AC,AE=AB,BD,CE相交于点F.
(Ⅰ)求证:A,E,F,D四点共圆;
(Ⅱ)若正△ABC的边长为2,求A,E,F,D所在圆的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com