精英家教网 > 高中数学 > 题目详情
已知ab≠0,点M(a,b)是圆x2+y2=r2内一点,直线m是以点M为中点的弦所在的直线,直线l的方程是ax+by=r2,则下列结论正确的是( )
A.m∥l,且l与圆相交
B.l⊥m,且l与圆相切
C.m∥l,且l与圆相离
D.l⊥m,且l与圆相离
【答案】分析:求圆心到直线的距离,然后与a2+b2<r2比较,可以判断直线与圆的位置关系,易得两直线的关系.
解答:解:以点M为中点的弦所在的直线的斜率是,直线m∥l,点M(a,b)是圆x2+y2=r2内一点,所以a2+b2<r2,圆心到ax+by=r2,距离是>r,故相离.
故选C.
点评:本题考查直线与圆的位置关系,两条直线的位置关系,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知ab≠0,点M(a,b)是圆x2+y2=r2内一点,直线m是以点M为中点的弦所在的直线,直线l的方程是ax+by=r2,则下列结论正确的是(  )
A、m∥l,且l与圆相交B、l⊥m,且l与圆相切C、m∥l,且l与圆相离D、l⊥m,且l与圆相离

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ab≠0,点M(a,b)是圆Ox2+y2=r2内一点,直线m是以点M为中点的弦所在的直线,直线l的方程是ax+by=r2,则直线l与直线m,⊙O之间的位置关系为
m∥l,且l与圆相离
m∥l,且l与圆相离

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省台州市仙居县宏大中学高二(上)期中数学试卷(理科)(解析版) 题型:选择题

已知ab≠0,点M(a,b)是圆x2+y2=r2内一点,直线m是以点M为中点的弦所在的直线,直线l的方程是ax+by=r2,则下列结论正确的是( )
A.m∥l,且l与圆相交
B.l⊥m,且l与圆相切
C.m∥l,且l与圆相离
D.l⊥m,且l与圆相离

查看答案和解析>>

科目:高中数学 来源:2010年四川省成都市石室中学高考数学三模试卷(理科)(解析版) 题型:选择题

已知ab≠0,点M(a,b)是圆x2+y2=r2内一点,直线m是以点M为中点的弦所在的直线,直线l的方程是ax+by=r2,则下列结论正确的是( )
A.m∥l,且l与圆相交
B.l⊥m,且l与圆相切
C.m∥l,且l与圆相离
D.l⊥m,且l与圆相离

查看答案和解析>>

科目:高中数学 来源:2010年四川省成都市石室中学高考数学三模试卷(文科)(解析版) 题型:选择题

已知ab≠0,点M(a,b)是圆x2+y2=r2内一点,直线m是以点M为中点的弦所在的直线,直线l的方程是ax+by=r2,则下列结论正确的是( )
A.m∥l,且l与圆相交
B.l⊥m,且l与圆相切
C.m∥l,且l与圆相离
D.l⊥m,且l与圆相离

查看答案和解析>>

同步练习册答案