精英家教网 > 高中数学 > 题目详情

【题目】已知直线l:x+2y﹣4=0与坐标轴交于A、B两点,O为坐标原点,则经过O、A、B三点的圆的标准方程为

【答案】(x﹣2)2+(y﹣1)2=5
【解析】解:根据题意,直线l:x+2y﹣4=0与坐标轴的交点为(4,0)、(0,2),

经过O、A、B三点的圆即△OAB的外接圆,

又由△OAB为直角三角形,则其外接圆直径为|AB|,圆心为AB的中点,

则有2r= =2 ,即r=

圆心坐标为(2,1),

则要求圆的方程为:(x﹣2)2+(y﹣1)2=5;

所以答案是:(x﹣2)2+(y﹣1)2=5.

【考点精析】本题主要考查了圆的标准方程的相关知识点,需要掌握圆的标准方程:;圆心为A(a,b),半径为r的圆的方程才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)=ex(ex﹣a)﹣a2x.
(1)讨论 f(x)的单调性;
(2)若f(x)≥0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求函数的值域;

(2)如果对任意的不等式恒成立,求实数的取值范围;

(3)是否存在实数使得函数的最大值为0,若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在递增等差数列{an}中,a1=2,a3是a1和a9的等比中项. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn= ,Sn为数列{bn}的前n项和,是否存在实数m,使得Sn<m对于任意的n∈N+恒成立?若存在,请求实数m的取值范围,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数集,其中, .定义向量集.若对于任意,存在,使得,则称具有性质.例如具有性质.

(1)若,且具有性质,求的值;

(2)若具有性质,求证: ,且当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有30名男职员和20名女职员,公司进行了一次全员参与的职业能力测试,现随机询问了该公司5名男职员和5名女职员在测试中的成绩(满分为30分),可知这5名男职员的测试成绩分别为16,24,18,

22,20,5名女职员的测试成绩分别为18,23,23,18,23,则下列说法一定正确的是( )

A. 这种抽样方法是分层抽样

B. 这种抽样方法是系统抽样

C. 这5名男职员的测试成绩的方差大于这5名女职员的测试成绩的方差

D. 该测试中公司男职员的测试成绩的平均数小于女职员的测试成绩的平均数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,an+1= (n∈N*).
(1)求证:{ + }是等比数列,并求{an}的通项公式an
(2)数列{bn}满足bn=(3n﹣1) an , 数列{bn}的前n项和为Tn , 若不等式(﹣1)nλ<Tn+ 对一切n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组,第二组,,第五组,下图是按上述分组方法得到的频率分布直方图

(1)若成绩小于15秒认为良好,求该样本在这次百米测试中成绩良好的人数;

(2)请估计学校1800名学生中,成绩属于第四组的人数;

(3)请根据频率分布直方图,求样本数据的众数和中位数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中)的周期为,且图象上一个最低点为

(1)求的解析式;

(2)当时,求的最值.

查看答案和解析>>

同步练习册答案