精英家教网 > 高中数学 > 题目详情
7.(已知曲线C1的参数方程是$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=-4cosθ.
(1)求曲线C1与C2交点的极坐标;
(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).

分析 (1)把参数方程和极坐标方程化为直角坐标方程,联立方程组求出交点的坐标,再把交点的直角坐标化为极坐标;
(2)画出图象,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.

解答 解:(1)由$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$(θ为参数),得$\left\{\begin{array}{l}{x=2cosθ}\\{y-2=2sinθ}\end{array}\right.$,两式平方作和得:x2+(y-2)2=4,即x2+y2-4y=0;
由ρ=-4cosθ,得ρ2=-4ρcosθ,即x2+y2=-4x.
两式作差得:x+y=0,代入C1得交点为(0,0),(-2,2).
其极坐标为(0,0),(2$\sqrt{2}$,$\frac{3π}{4}$);
(2)如图,
由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.
此时|AB|=2$\sqrt{2}$+4,O到AB的距离为$\sqrt{2}$.
∴△OAB的面积为S=$\frac{1}{2}$×(2$\sqrt{2}$+4)×$\sqrt{2}$=2+2$\sqrt{2}$.

点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P($\sqrt{3}$,$\frac{1}{2}$),离心率是$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的标准方程:
(2)若直线l与椭圆C交于A,B两点,线段AB的中点为($\frac{1}{2}$,$\frac{1}{2}$),求直线l与坐标轴围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=(m2-m+1)${x}^{\frac{{m}^{2}-2m-1}{2}}$是幂函数,且图象不经过原点.
(1)求f(4)的值;
(2)解方程f(|x|)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知全集U=R,集合A={x|x2-3x-18≥0},B={x|$\frac{x+5}{x-14}$≤0}.
(1)求(∁UB)∩A.
(2)若集合C={x|2a<x<a+1},且B∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+2ax+2
(1)若方程f(x)=0有两不相等的正根,求a的取值范围;
(2)求f(x)在x∈[-5,5]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E、交CC′于F,则以下结论中错误的是(  )
A.四边形BFD′E一定是平行四边形
B.四边形BFD′E有可能是正方形
C.四边形BFD′E有可能是菱形
D.四边形BFD′E在底面投影一定是正方形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={y|y=x2+1,x∈R},集合N={y|y=ln(x+1)+1,x∈R},则M∩N等于(  )
A.{(0,1)}B.(0,1)C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=(a-2)x2+2(a-2)x-4,
(Ⅰ)当x∈R时,恒有f(x)<0,求a的取值范围;
(Ⅱ)当x∈[1,3)时,恒有f(x)<0,求a的取值范围;
(Ⅲ)当a∈(1,3)时,恒有f(x)<0,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数的值域:
(1)y=$\sqrt{x}$+1;   
(2)y=-x2+4x-7(x∈[0,3])    
(3)y=$\frac{1-{x}^{2}}{1+{x}^{2}}$.

查看答案和解析>>

同步练习册答案