精英家教网 > 高中数学 > 题目详情
16.已知函数的定义域为R,且满足下列三个条件:
①对任意的x1,x2∈[4,8],当x1<x2时,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0;
②f(x+4)=-f(x);
③y=f(x+4)是偶函数;
若a=f(6),b=f(11),c=f(2017),则a,b,c的大小关系正确的是(  )
A.a<b<cB.b<a<cC.a<c<bD.c<b<a

分析 根据题意,由①分析可得函数f(x)在区间[4,8]上为增函数,由②分析可得函数f(x)的周期为8,由③分析可得函数f(x)的图象关于直线x=-4和x=4对称,进而分析可得a=f(6),b=f(11)=f(3)=f(5),c=f(2017)=f(252×8+1)=f(1)=f(7),结合函数在[4,8]上的单调性,分析可得答案.

解答 解:根据题意,
若对任意的x1,x2∈[4,8],当x1<x2时,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,则函数f(x)在区间[4,8]上为增函数,
若f(x+4)=-f(x),则f(x+8)=-f(x+4)=f(x),即函数f(x)的周期为8,
若y=f(x+4)是偶函数,则函数f(x)的图象关于直线x=-4对称,又由函数的周期为8,则函数f(x)的图象也关于直线x=4对称,
a=f(6),b=f(11)=f(3)=f(5),c=f(2017)=f(252×8+1)=f(1)=f(7),
又由函数f(x)在区间[4,8]上为增函数,
则有b<a<c;
故选:B.

点评 本题考查抽象函数的应用,关键是依据题意,分析函数的单调性和周期性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如图,已知正方体ABCD-A'B'C'D'的外接球的体积为$\frac{{\sqrt{3}}}{2}π$,将正方体割去部分后,剩余几何体的三视图如图所示,则剩余几何体的表面积为(  )
A.$\frac{9}{2}+\frac{{\sqrt{3}}}{2}$B.$3+\sqrt{3}$或$\frac{9}{2}+\frac{{\sqrt{3}}}{2}$C.$2+\sqrt{3}$D.$\frac{9}{2}+\frac{{\sqrt{3}}}{2}$或$2+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱锥ABC-A1B1C1中,△ABC是边长为2的等边三角形,AA1=4,A1在底面ABC上的射影为BC的中点E,D是B1C1的中点.
(Ⅰ)证明:A1D⊥A1C;
(Ⅱ)求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设α,β是两个不同的平面,l是直线且l?α,则“α∥β”是“l∥β”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={0,1,2},B={x|x2-5x+4<0},A∩(∁RB)=(  )
A.{0,1,2}B.{1,2}C.{0}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).
(Ⅰ)求图中a的值;
(Ⅱ)估计该次考试的平均分$\overline{x}$(同一组中的数据用该组的区间中点值代表);
(Ⅲ)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
 晋级成功晋级失败合计
16  
  50
合计   
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.400.250.150.100.050.025
k0.7801.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“欧几里得算法”是有记载的最古老的算法,可追溯至公元前300年前,如图的程序框图的算法思路就是来源于“欧几里得算法”.执行改程序框图(图中“aMODb”表示a除以b的余数),若输入的a,b分别为675,125,则输出的a=(  )
A.0B.25C.50D.75

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知F1,F2分别是长轴长为2$\sqrt{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,A1,A2是椭圆C的左右顶点,P为椭圆上异于A1,A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为-$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点N,点N横坐标的取值范围是(-$\frac{1}{4}$,0),求线段AB长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知三个向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$共面,且均为单位向量,$\overrightarrow{a}$•$\overrightarrow{b}$=0,则|$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$|的取值范围是(  )
A.[$\sqrt{2}$-1,$\sqrt{2}$+1]B.[1,$\sqrt{2}$]C.[$\sqrt{2}$,$\sqrt{3}$]D.[$\sqrt{2}$-1,1]

查看答案和解析>>

同步练习册答案