精英家教网 > 高中数学 > 题目详情

下图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为,腰长为的等腰梯形, 则该几何体的体积是

A.            B.            C.             D.

 

【答案】

C

【解析】

试题分析:解:正视图和侧视图都是一个两底长分别为2和4,腰长为的等腰梯形,俯视图是两个圆中间的圆是虚线,∴几何体是一个圆台,圆台的上底是一个直径为2,下底的直径为4,母线长是的圆台,圆台的高是 =1,∴圆台的体积是  (π+ +4π)×1=故选C.

考点:三视图确定几何图形

点评:本题考查由三视图确定几何图形,根据条件中所给的数据求几何体的体积,考查圆台的体积公式,本题是一个基础题

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(07年江西卷文)(12分)

下图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知

(1)设点的中点,证明:平面

(2)求与平面所成的角的大小;

(3)求此几何体的体积.

查看答案和解析>>

科目:高中数学 来源:江西省高考真题 题型:解答题

下图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC。已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3,
(1)设点O是AB的中点,证明:OC∥平面A1B1C1
(2)求二面角B-AC-A1的大小;
(3)求此几何体的体积.

查看答案和解析>>

科目:高中数学 来源:江西省高考真题 题型:解答题

下图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC。已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3,
(1)设点O是AB的中点,证明:OC∥平面A1B1C1
(2)求AB与平面AA1C1C所成的角的大小;
(3)求此几何体的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:

下图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.

(1)设点OAB的中点,证明OC∥平面A1B1C1;

(2)求AB与平面AA1C1C所成的角的大小;

(3)求此几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

20. 下图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=1,∠AlBlC1=90°,AAl=4,BBl=2,CCl=3.

   (1)设点O是AB的中点,证明:OC∥平面A1B1C1

   (2)求AB与平面AA1C1C所成的角的大小;

   (3)求此几何体的体积.

查看答案和解析>>

同步练习册答案