【题目】在正四棱锥V﹣ABCD中,底面正方形ABCD的边长为1,侧棱长为2,则异面直线VA与BD所成角的大小为 .
【答案】
【解析】解:如图所示,连接AC,交BD于O,连接VO
∵四边形ABCD是正方形,
∴AC⊥BD,O为BD的中点
又∵正四棱锥V﹣ABCD中,VB=VD
∴VO⊥BD
∵AC∩VO=O,AC、VO平面ACV
∴BD⊥平面ACV
∵VA平面ACV
∴BD⊥VA;
即异面直线VA与BD所成角等于 .
所以答案是: .
【考点精析】本题主要考查了异面直线及其所成的角的相关知识点,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
写出曲线的极坐标的方程以及曲线的直角坐标方程;
若过点(极坐标)且倾斜角为的直线与曲线交于, 两点,弦的中点为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列中, ,且对任意正整数都成立,数列的前项和为.
(1)若,且,求;
(2)是否存在实数,使数列是公比为1的等比数列,且任意相邻三项按某顺序排列后成等差数列,若存在,求出所有的值;若不存在,请说明理由;
(3)若,求.(用表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先后随机投掷2枚正方体骰子,其中x表示第1枚骰子出现的点数,y表示第2枚骰子出现的点数,
(1)求点P(x,y)在直线y=x﹣1上的概率;
(2)求点P(x,y)满足y2<4x的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.
(1)当a为何值时,直线l与圆C相切;
(2)当直线l与圆C相交于A、B两点,且AB=2 时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C1: + =1(a>b>0)过点A(1, ),其焦距为2.
(1)求椭圆C1的方程;
(2)已知椭圆具有如下性质:若椭圆的方程为 + =1(a>b>0),则椭圆在其上一点A(x0 , y0)处的切线方程为 + =1,试运用该性质解决以下问题:
(i)如图(1),点B为C1在第一象限中的任意一点,过B作C1的切线l,l分别与x轴和y轴的正半轴交于C,D两点,求△OCD面积的最小值;
(ii)如图(2),过椭圆C2: + =1上任意一点P作C1的两条切线PM和PN,切点分别为M,N.当点P在椭圆C2上运动时,是否存在定圆恒与直线MN相切?若存在,求出圆的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}中,已知an>0,a1+a2+a3=15,且a1+2,a2+5,a3+13构成等比数列{bn}的前三项.
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A1、A2为椭圆 的左右顶点,若在椭圆上存在异于A1、A2的点P,使得 ,其中O为坐标原点,则椭圆的离心率e的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com