【题目】在平面直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为,曲线C的参数方程为(为参数,).
(1)求直线l的直角坐标方程及曲线C的普通方程;
(2)证明:直线l和曲线C相交,并求相交弦的长度.
科目:高中数学 来源: 题型:
【题目】下列有四个关于命题的判断,其中正确的是()
A.命题“,”是假命题
B.命题“若,则或”是真命题
C.命题“,”的否定是“,”
D.命题“在中,若,则是钝角三角形”是真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国家的精准扶贫极大地激发了农村贫困村民的生产积极性.新春伊始,某村计划利用2019年国家专项扶贫款120万元兴建两个扶贫产业:毛驴养殖和蔬菜温室大棚.建一个养殖场的费用是9万元,建一个温室大棚的费用是12万元.根据村民意愿,养殖场至少要建3个,温室大棚至少要建2个,并且由于建设用地的限制,养殖场的数量不能超过温室大棚数量的2倍,则建养殖场和温室大棚个数之和的最大值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,在点处的切线方程为.
(Ⅰ)求的值;
(Ⅱ)已知,当时,恒成立,求实数的取值范围;
(Ⅲ)对于在中的任意一个常数,是否存在正数,使得,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费为5万元.求:工厂和仓库之间的距离为多少千米时,运费与仓储费之和最小,最小为多少万元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列命题:
①在线性回归模型中,相关指数越接近于1,表示回归效果越好;
②两个变量相关性越强,则相关系数r就越接近于1;
③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少0.5个单位;
④两个模型中残差平方和越小的模型拟合的效果越好.
⑤回归直线恒过样本点的中心,且至少过一个样本点;
⑥若的观测值满足≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;
⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 其中正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一般来说,一个人脚掌越长,他的身高就越高.现对10名成年人的脚掌长与身高进行测量,得到数据(单位均为)作为样本如下表所示.
脚掌长(x) | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
身高(y) | 141 | 146 | 154 | 160 | 169 | 176 | 181 | 188 | 197 | 203 |
(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程;
(2)若某人的脚掌长为,试估计此人的身高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
(参考数据:,,,)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com