精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为,曲线C的参数方程为(为参数,).

(1)求直线l的直角坐标方程及曲线C的普通方程;

(2)证明:直线l和曲线C相交,并求相交弦的长度.

【答案】12

【解析】

(1)按照两角差的正弦公式和极坐标化为直角坐标的公式得到结果;(2)根据第一问得到的圆的普通方程可求得圆的圆心和坐标,再由垂径定理构造直角三角形,得到弦长.

(1) 因为直线的极坐标方程为:

所以,即为

因为,所以直线的直角坐标方程为

即为

由曲线的参数方程 得,两式平方做和

得到

所以曲线的普通方程为

(2) 由(1)得,圆 的圆心为,半径

因为圆心到直线的距离

所以直线与圆相交

设交点为,则

所以,相交弦的长度为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列有四个关于命题的判断,其中正确的是()

A.命题是假命题

B.命题,则是真命题

C.命题的否定是

D.命题中,若,则是钝角三角形是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家的精准扶贫极大地激发了农村贫困村民的生产积极性.新春伊始,某村计划利用2019年国家专项扶贫款120万元兴建两个扶贫产业:毛驴养殖和蔬菜温室大棚.建一个养殖场的费用是9万元,建一个温室大棚的费用是12万元.根据村民意愿,养殖场至少要建3个,温室大棚至少要建2个,并且由于建设用地的限制,养殖场的数量不能超过温室大棚数量的2倍,则建养殖场和温室大棚个数之和的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面的中点.

(1)求证:平面

(2)求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在点处的切线方程为.

(Ⅰ)求的值;

(Ⅱ)已知,当时,恒成立,求实数的取值范围;

(Ⅲ)对于在中的任意一个常数,是否存在正数,使得,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费为5万元.求:工厂和仓库之间的距离为多少千米时,运费与仓储费之和最小,最小为多少万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①在线性回归模型中,相关指数越接近于1,表示回归效果越好;

②两个变量相关性越强,则相关系数r就越接近于1;

③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少0.5个单位;

④两个模型中残差平方和越小的模型拟合的效果越好.

⑤回归直线恒过样本点的中心,且至少过一个样本点;

⑥若的观测值满足≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;

⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一般来说,一个人脚掌越长,他的身高就越高.现对10名成年人的脚掌长与身高进行测量,得到数据(单位均为)作为样本如下表所示.

脚掌长(x

20

21

22

23

24

25

26

27

28

29

身高(y

141

146

154

160

169

176

181

188

197

203

1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程

2)若某人的脚掌长为,试估计此人的身高;

3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.

(参考数据:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在区间上存在零点,求实数的取值范围;

(2)若对任意的,总存在使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案