精英家教网 > 高中数学 > 题目详情
已知非零向量
a
, 
b
c
满足|
a
-
b
|=1
(
a
-
c
)•(
b
-
c
)=0
a
b
≥0
”,设|
c
|
的最大值与最小值分别为m,n,则m-n值为(  )
A、1
B、2
C、
1
2
D、
1
4
考点:平面向量数量积的运算
专题:平面向量及应用
分析:非零向量
a
, 
b
c
满足|
a
-
b
|=1
(
a
-
c
)•(
b
-
c
)=0
a
b
≥0
”,假设
a
=(0,2),
b
=(0,1),
c
=(x y).利用 (
a
-
c
)•(
b
-
c
)
=0,可得 x2+(x-
3
2
)2
=
1
4
,故满足条件的向量
c
的终点在以(0,
3
2
)为圆心,半径等于
1
2
的圆上,即可得出.
解答: 解:∵非零向量
a
, 
b
c
满足|
a
-
b
|=1
(
a
-
c
)•(
b
-
c
)=0
a
b
≥0
”,假设
a
=(0,2),
b
=(0,1),
c
=(x y).
(
a
-
c
)•(
b
-
c
)
=(-x,2-y)•(-x,1-y)=x2+y2-3y+2=x2+(x-
3
2
)2
-
1
4
=0,
即 x2+(x-
3
2
)2
=
1
4

故满足条件的向量
c
的终点在以(0,
3
2
)为圆心,半径等于
1
2
的圆上,
|
c
|
的最大值与最小值分别为m=3,n=1,故 m-n=2,
故选:B.
点评:本题考查了向量的数量积运算性质、圆的标准方程及其性质,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,直线l与抛物线y2=2x相交于A,B两点.
(1)求证:“如果直线l过点(3,0),那么
OA
OB
=3”是真命题.
(2)写出(1)中命题的逆命题(直线l与抛物线y2=2x相交于A,B两点为大前提),判断它是真命题还是假命题,如果是真命题,写出证明过程;如果是假命题,则只需要举出一个反例说明即可.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x-y-1≤0
x≥1
2x+y-6≤0
,则当x+y=3时,目标函数z=
y
x
的取值范围是(  )
A、[
4
7
,4]
B、[
1
2
,2]
C、[
1
2
,4]
D、[
4
7
,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
,则正确的是(  )
A、
a
+
b
=
b
+
a
B、若
a
b
为两个单位向量,则
a
=
b
C、
a
-
b
=
b
-
a
D、若非零
a
b
共线,则
a
b
方向相同

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex(ax2-x-1)(a∈R).
(Ⅰ)若函数f(x)在R上单调递减,求a的取值范围
(Ⅱ)当a>0时,求f(|sinx|)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,记ρ为极径,θ为极角,圆C:ρ=3cosθ的圆心C到直线l:ρcosθ=2的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是单位向量,若
a
+
b
=
2
c
,则
a
c
的值为(  )
A、
2
2
B、-
2
2
C、1
D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx,g(x)=(-x2+ax-3)ex(其中a实数,e是自然对数的底数).
(Ⅰ)当a=5时,求函数y=g(x)在点(1,e)处的切线方程;
(Ⅱ)求f(x)在区间[t,t+2](t>0)上的最小值;
(Ⅲ) 若存在x1,x2∈[e-1,e](x1≠x2),使方程g(x)=2exf(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是第二象限角,且cosα=-
12
13
,则tanα=(  )
A、
5
12
B、
12
5
C、-
5
12
D、-
12
5

查看答案和解析>>

同步练习册答案