【题目】已知函数
(1)讨论的单调性;
(2)若直线与曲线都只有两个交点,证明:这四个交点可以构成一个平行四边形,并计算该平行四边形的面积.
【答案】(1)答案见解析;(2)证明见解析,面积为12.
【解析】试题分析:
(1)首先求解导函数,然后分类讨论有:
当时, 上递增.
当时, 在上递减,在上递增;
当时, 在上递减,在上递增.
(2)令得则的极大值为,极小值为.据此可得四个交点分别为(0,0),(3,0),(-1,-4),(2,-4)即这四个交点可以构成一个平等四边形,且其面积为
试题解析:
(1)
令,得或
当时, 则上递增.
当时, ,∴在上递减,在上递增;
当时, ,∴在上递减,在上递增.
(2)证明:令得
令得;令
∴的极大值为,极小值为.
∵,令或3;
令
∴这四个交点分别为(0,0),(3,0),(-1,-4),(2,-4)
∵3-0=2-(-1)=3
∴这四个交点可以构成一个平等四边形,且其面积为
科目:高中数学 来源: 题型:
【题目】已知函数
(1)若m=1,求函数f(x)的定义域.
(2)若函数f(x)的值域为R,求实数m的取值范围.
(3)若函数f(x)在区间 上是增函数,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C1的圆心在坐标原点O,且恰好与直线l1:x﹣2y+3 =0相切,点A为圆上一动点,AM⊥x轴于点M,且动点N满足 ,设动点N的轨迹为曲线C.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与椭圆C相交于不同两点A,B,且满足 (O为坐标原点),求线段AB长度的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交警随机抽取了途径某服务站的40辆小型轿车在经过某区间路段的车速(单位: ),现将其分成六组为后得到如图所示的频率分布直方图.
(1)某小型轿车途经该路段,其速度在以上的概率是多少?
(2)若对车速在两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知公差不为零的等差数列{an}中,a1=1,且a1 , a3 , a9成等比数列.
(1)求数列{an}的通项公式;
(2)设bn= +n,求数列Sn的前Sn项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的斜率为k,经过点(1,﹣1),将直线向右平移3个单位,再向上平移2个单位,得到直线m,若直线m不经过第四象限,则直线l的斜率k的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设两个非零向量 与 不共线.
(1)若 = + , =2 +8 , =3( ﹣ ).求证:A,B,D三点共线;
(2)试确定实数k,使k + 和 +k 共线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com