精英家教网 > 高中数学 > 题目详情

【题目】在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为连续天,每天新增疑似病例不超过.过去日,甲、乙、丙、丁四地新增疑似病例数据信息如下,则一定符合该标志的是(

甲地:总体平均数,且中位数为

乙地:总体平均数为,且标准差

丙地:总体平均数,且极差

丁地:众数为,且极差

A.甲地B.乙地C.丙地D.丁地

【答案】CD

【解析】

根据条件,举例说明甲地和乙地,根据极差的概念,说明每天新增疑似病例的最大值,判断丙地和丁地.

甲地:满足总体平均数,且中位数为,举例7天的新增疑似病例为0000567,则不符合该标志;

乙地:若7天新增疑似病例为1111226,满足平均数为2,标准差

但不符合该标志;

丙地:由极差可知,若新增疑似病例最多超过5人,比如6人,那么最小值不低于4人,

那么总体平均数就不正确,故每天新增疑似病例低于5人,故丙地符合该标志;

丁地:因为众数为1,且极差,所以新增疑似病例的最大值,所以丁地符合该标志.

故选:CD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数有两个不同的零点,求实数的取值范围;

(2)求当时, 恒成立的的取值范围,并证明

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=,弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”指半径长与圆心到弦的距离之差。现有圆心角为,半径等于4米的弧田.下列说法正确的是( )

A. “弦”米,“矢”

B. 按照经验公式计算所得弧田面积()平方米

C. 按照弓形的面积计算实际面积为()平方米

D. 按照经验公式计算所得弧田面积比实际面积少算了大约0.9平方米(参考数据 )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园雏鹰班的生活老师统计2018年上半年每个月的20日的昼夜温差和患感冒的小朋友人数(/人)的数据如下:

温差

患感冒人数

8

11

14

20

23

26

其中.

(Ⅰ)请用相关系数加以说明是否可用线性回归模型拟合的关系;

(Ⅱ)建立关于的回归方程(精确到),预测当昼夜温差升高时患感冒的小朋友的人数会有什么变化?(人数精确到整数)

参考数据:.参考公式:相关系数:,回归直线方程是 ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中),(其中为自然对数的底数).

(1)若曲线处的切线与直线垂直,求的单调区间和极值;

(2)若对任意,总存在使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足,且的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,对任意正数数 恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若函数上是增函数,求正数的取值范围;

(2)当时,设函数的图象与x轴的交点为,曲线两点处的切线斜率分别为,求证:+ .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知4名学生和2名教师站在一排照相,求:

(1)中间二个位置排教师,有多少种排法?

(2)首尾不排教师,有多少种排法?

(3)两名教师不站在两端,且必须相邻,有多少种排法?

(4)两名教师不能相邻的排法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理是合情推理的是(  )

①由圆的性质类比出球的有关性质;

②由直角三角形、等腰三角形、等边三角形内角和是归纳出所有三角形的内角和都是;③由,满足,,推出是奇函数;

④三角形内角和是,四边形内角和是,五边形内角和是,由此得凸多边形内角和是.

A. ①②B. ①③④C. ②④D. ①②④

查看答案和解析>>

同步练习册答案