【题目】如图,在平面直角坐标系中,已知圆及点,.
(1)若直线平行于,与圆相交于,两点,,求直线的方程;
(2)在圆上是否存在点,使得?若存在,求点的个数;若不存在,说明理由.
【答案】(1)或.(2).
【解析】
试题分析:(1)本题实质为直线被圆截得弦长问题,一般方法为利用垂径定理进行转化解决:先根据AB斜率得直线斜率,设直线方程,再根据AB长得弦长,最后根据垂径定理得,根据圆心到直线的距离公式得代入得,解得或,(2)点既在圆上,又满足,因此研究点的个数,实质研究两曲线位置关系,先确定满足的轨迹方程 ,利用直接法得,也为圆,所以根据两圆位置关系可得点的个数
试题解析:(1)圆的标准方程为,所以圆心,半径为.
因为,,,所以直线的斜率为,
设直线的方程为, ……………………………………………2分
则圆心到直线的距离为.…………………………4分
因为,
而,所以, ……………………………6分
解得或,
故直线的方程为或.…………………………………8分
(2)假设圆上存在点,设,则,
,
即,即, ………………………………10分
因为,……………………………………12分
所以圆与圆相交,
所以点的个数为.…………………………………………………………14分
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线:,过焦点斜率大于零的直线交抛物线于、两点,且与其准线交于点.
(1)若线段的长为,求直线的方程;
(2)在上是否存在点,使得对任意直线,直线,,的斜率始终成等差数列,若存在求点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(其中)
(Ⅰ) 若在其定义域内为单调递减函数,求的取值范围;
(Ⅱ) 是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,=2.71828…).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为实数).
(1)当时,求函数的图象在点处的切线方程;
(2)设函数(其中为常数),若函数在区间上不存在极值,且存在满足,求的取值范围;
(3)已知,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论正确的是
①在某项测量中,测量结果服从正态分布.若在内取值的概率为0.35,则在内取值的概率为0.7;
②以模型去拟合一组数据时,为了求出回归方程,设,其变换后得到线性回归方程,则;
③已知命题“若函数在上是增函数,则”的逆否命题是“若,则函数在上是减函数”是真命题;
④设常数,则不等式对恒成立的充要条件是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,两点的坐标分别为,动点满足:直线与直线的斜率之积为.
(1)求动点的轨迹方程;
(2)过点作两条互相垂直的射线,与(1)的轨迹分别交于两点,求面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com