精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形中, 交于点,现将沿折起得到三棱锥 分别是 的中点.

(1)求证:

(2)若三棱锥的最大体积为,当三棱锥的体积为,且为锐角时,求三棱锥的体积.

【答案】(1)证明见解析;(2) .

【解析】试题分析:(1)根据折叠前几何关系得 ,再根据线面垂直判定定理得平面,即得;(2)先确定三棱锥的取最大体积的条件:三棱锥的高为,再根据三棱锥体积公式得三棱锥的体积为时条件: 平面,最后根据等体积法求三棱锥的体积.

试题解析:(1)依题意易知 ,∴平面

又∵平面,∴.

(2)当体积最大时三棱锥的高为,当体积为时,高为

中, ,作,∴,∴

为等边三角形,∴重合,即平面

易知.

平面,∴,∴

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年来,空气质量成为人们越来越关注的话题,空气质量指数(,Air Quality Inder简称 )是定量描述空气质量状况的指数,空气质量按照 大小分为六级, 为优; 为良; 为轻度污染; 为中度污染; 为重度污染;大于300为严重污染.环保部门记录了2017年某月哈尔滨市10天的 的茎叶图如下:

(1)利用该样本估计该地本月空气质量优良( )的天数;(按这个月总共30天计算)
(2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究,求抽取的2天中至少有一天空气质量是优的概率;
(3)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为 ,求 的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知n为正整数,在二项式( +2x)n的展开式中,若前三项的二项式系数的和等于79.
(1)求n的值;
(2)判断展开式中第几项的系数最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分12分甲、乙两位学生参加数学竞赛培训现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次记录如下:

82 81 79 78 95 88 93 84

92 95 80 75 83 80 90 85

1用茎叶图表示这两组数据;

2现要从中选派一人参加数学竞赛从统计学的角度在平均数、方差或标准差中选两个分析你认为选派哪位学生参加合适?请说明理由

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018海南高三阶段性测试(二模)如图,在直三棱柱中, ,点的中点,点上一动点.

I)是否存在一点,使得线段平面?若存在,指出点的位置,若不存在,请说明理由.

II)若点的中点且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论: ①若x>0,则x>sinx恒成立;
②“若am2<bm2 , 则a<b”的逆命题为真命题
m∈R,使f(x)=(m﹣1)x 是幂函数,且在(﹣∞,0)上单调递减
④对于命题p:x∈R使得x2+x+1<0,则¬p:x∈R,均有x2+x+1>0
其中正确结论的个数是(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.

(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;

(2)请你估算该年级学生成绩的中位数;

(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+bx2+cx+d的图象如图,则函数 的单调递减区间是(
A.(﹣∞,﹣2)
B.(﹣∞,1)
C.(﹣2,4)
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个6×6的表格中放3颗完全相同的白棋和3颗完全相同的黑棋,若这6颗棋子不在同一行也不在同一列上,则不同的放法有(
A.14400种
B.518400种
C.720种
D.20种

查看答案和解析>>

同步练习册答案