分析 (1)在△ABC中,由已知结合勾股定理可得AB⊥AC.再由三棱柱ABC-A1B1C1为直三棱柱,可得AB⊥AA1,然后由线面垂直的判定可得AB⊥平面AA1C,进一步得到AB⊥A1C;
(2)设A1C与AC1交于E点,连接ED.由三角形中位线定理可得A1B∥ED,由线面平行的判定可得A1B∥平面ADC1;
(3)求出△ABC的面积$S=\frac{1}{2}×3×4=6$,直接由棱柱的体积公式求解.
解答 (1)证明:在△ABC中,AB=3,AC=4,BC=5,
∴AB2+AC2=BC2,
∴AB⊥AC.
∵三棱柱ABC-A1B1C1为直三棱柱,
∴AA1⊥平面ABC,
∵AB?平面ABC,
∴AB⊥AA1,
∵AC∩AA1=A,
∴AB⊥平面AA1C,
∵A1C?平面AA1C,
∴AB⊥A1C;
(2)证明:设A1C与AC1交于E点,连接ED.
∵在△A1BC中,D为BC的中点,E为A1C的中点,
∴A1B∥ED,
∵ED?平面ADC1,A1B?平面ADC1,
∴A1B∥平面ADC1;
(3)解:∵△ABC的面积$S=\frac{1}{2}×3×4=6$,
直三棱柱ABC-A1B1C1的高h=4,
∴直三棱柱ABC-A1B1C1的体积V=Sh=6×4=24.
点评 本题考查直线与平面垂直的判定,考查空间想象能力和思维能力,训练了柱、锥、台体体积的求法,是中档题.
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | $\frac{1}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{2}$ | B. | 7 | C. | -$\frac{1}{2}$或$\frac{7}{2}$ | D. | -1或7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=1 | B. | 2x+y-1=0 | ||
C. | y=1或2x+y-1=0 | D. | 2x+y-1=0或2x+y+1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{2}}{4}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{{\sqrt{10}}}{4}$ | D. | $\frac{{\sqrt{6}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com