精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知直三棱柱ABC-A1B1C1中,∠ACB=90°,侧面AB1与侧面AC1所成的二面角为60°,M为AA1上的点,∠A1MC1=30°,∠CMC1=90°,AB=a.
(1)求BM与侧面AC1所成角的正切值;
(2)求顶点A到面BMC1的距离.
分析:建立空间坐标系,求出各点的坐标,
(1)求出线BM方向向量与面AC1的法向量.由公式求出线面角的正弦,再求余弦.算出正切即可
(2)求出向量MA的坐标,平面MBC1的法向量,求出向量MA在平面MBC1的法向量上的投影的长度,此即顶点A到面BMC1的距离
解答:解:由题知AC=
1
2
a,BC=
3
2
a,A1M=
3
2
a,MC1=a,AM=
3
6
a,故棱柱的高CC1=
2
3
3
a,
以C1为原点,C1A1所在直线为x轴,C1B1所在直线为y轴建立空间坐标系,
则C1(0,0,0),A1
1
2
a,0,0),B1(0,
3
2
a,0),C(0,0,
2
3
3
a),
A(
1
2
a,0,
2
3
3
a),B(0,
3
2
a,
2
3
3
a),M(
1
2
a,0,
3
2
a)
(1)面AC1法向量为
CB
=(0,
3
2
a,0),
BM
=(
1
2
a,-
3
2
a,-
3
6
a)
故线面角的正弦为sinθ=
3
4
a2
3
2
13
12
a
=
3
13
13
,cosθ=
2
13
13
,tanθ=
3
2

故所求线面角的正切为
3
2

(II)由已知
C 1M
=(
1
2
a,0,
3
2
a),
C 1B
=(0,
3
2
a,
2
3
3
a)
设面C1MB的法向量为
n
=(x,y,z)
n
C 1M
=0
n
C 1B
=0
1
2
a+z×
3
2
a=0
3
2
a+z×
2
3
3
a=0
1
2
x+
3
2
z=0
3
2
y+
2
3
3
z=0

令x=1,则z=-
3
3
,y=-
4
3
z=
4
3
9

n
=(1,-
3
3
4
3
9

MA
=(0,
3
6
a
,0),
故点A到面C1MB的距离为d=|
n
MA
n
|
=
1
6
a
1+
1
3
+
16
27
=
39
52
a.
即A到面C1MB的距离为
39
52
a.
点评:本题考点是立体几何中求线面角及求点到面的距离,由于本题第二问用传统的几何方法不易求得三角形的面积,故不方便用等体积法求点到面的距离,有鉴于此,虽然第一问用立体几何方法求线面角正切易求,但因为第二问必须建立空间坐标系,所以第一问也采用了空间向量方法求线面角的正弦;在第二问中,求点到面的距离问题转化成了求点与面上一点所连线段对应的向量在面的法向量上的投影长度的问题,可以看到,此法易想,思路固定,大大降低了解决立体几何问题时思维的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CC1、AB中点.
(Ⅰ)求证:CF⊥BB1
(Ⅱ)求四棱锥A-ECBB1的体积;
(Ⅲ)判断直线CF和平面AEB1的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱CC1上动点,F是AB中点,AC=BC=2,AA1=4.
(1)求证:CF⊥平面ABB1
(2)当E是棱CC1中点时,求证:CF∥平面AEB1
(3)在棱CC1上是否存在点E,使得二面角A-EB1-B的大小是45°,若存在,求CE
的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4,E、F分别是棱CC1、AB中点.
(1)判断直线CF和平面AEB1的位置关系,并加以证明;
(2)求四棱锥A-ECBB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中点.
(Ⅰ)求异面直线AB和C1D所成的角(用反三角函数表示);
(Ⅱ)若E为AB上一点,试确定点E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的条件下,求点D到平面B1C1E的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•莒县模拟)如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CCl、AB中点.
(I)求证:CF⊥BB1
(Ⅱ)求四棱锥A-ECBB1的体积;
(Ⅲ)证明:直线CF∥平面AEBl

查看答案和解析>>

同步练习册答案