精英家教网 > 高中数学 > 题目详情

设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥0}.
(Ⅰ)求CU(A∩B);
(Ⅱ)求(CUA)∩(CUB).

解:A={x|-1≤x<3},B={x|2x-4≥0}={x|x≥2}.
(I)∵A∩B={x|2≤x<3}
∴CU(A∩B)={x|x<2或x≥3}
(II)因为CUA={x|x<-1或x≥3},
CUB={x|x<2};
所以(CUA)∩(CUB)={x|x<-1}.
评分建议:结果若不写成集合或区间形式,每一小题得(4分);
区间端点的“开”与“闭”错误,每一小题得(4分);
分析:(I)先通过解不等式化简集合A,B,利用交集、并集的定义求出A∩B,CU(A∩B);
(II)由(I)得到的结果,利用补集、交集的定义,求出(CUA)∩(CUB).
点评:在进行集合间的交、并、补运算的时候,应该先化简各个集合,然后利用交、并、补的定义进行运算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.
(1)求?U(A∩B);
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,集合A={x|x2-2x<0},B={x|x>1},则集A∩?UB=
{x|0<x≤1}
{x|0<x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,集合A={x|x≥0},B={x|x2-2x-3<0},则(?UA)∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)设全集U=R,集合A={x|x2-x-30<0},B={x|cos
πx
3
=
1
2
},则A∩B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,集合A={x|-2<x≤3},B={x|0≤x<5}
(1)分别求A∪B,A∩(?UB);
(2)设C={x|x∈A∪B且x∉A∩B},求集合C.

查看答案和解析>>

同步练习册答案