精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的焦点到短轴的端点的距离为,离心率为

1)求椭圆的方程;

2)过点的直线交椭圆两点,过点作平行于轴的直线,交直线于点,求证:直线恒过定点.

【答案】1;(2)证明见解析.

【解析】

1)由题意可得,由离心率公式可得,再由的关系可得,即可得到所求的椭圆方程;

2)先求出直线的斜率不存在时直线的方程,直线过点;当直线的斜率存在,设过点的直线的方程为,联立椭圆方程,运用韦达定理,以及直线的斜率公式,结合三点共线的条件,即可得到定点且定点为

1)由椭圆的焦点到短轴的端点的距离为,则

又离心率为,即,解得,∴

∴椭圆的方程为.

2)证明:当直线的斜率不存在,即方程

代入椭圆方程可得,即有

直线的方程为,直线过点.

当直线的斜率存在,设过点的直线的方程为

,消去整理得

恒成立,

①,②,

由①②可得

,即

综上可得直线过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图①,已知矩形ABCD满足AB=5,沿平行于AD的线段EF向上翻折(点E在线段AB上运动,点F在线段CD上运动),得到如图②所示的三棱柱.

⑴若图②中△ABG是直角三角形,这里G是线段EF上的点,试求线段EG的长度x的取值范围;

⑵若⑴中EG的长度为取值范围内的最大整数,且线段AB的长度取得最小值,求二面角的值;

⑶在⑴与⑵的条件都满足的情况下,求三棱锥A-BFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数满足,现给出下列命题:①函数是以2为周期的周期函数;②函数是以4为周期的周期函数;③函数为奇函数;④函数为偶函数,则其中真命题的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了反映国民经济各行业对仓储物流业务的需求变化情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份有限公司通过联合调查,制定了中国仓储指数.如图所示的折线图是2016年1月至2017年12月的中国仓储指数走势情况.

根据该折线图,下列结论正确的是

A. 2016年各月的仓储指数最大值是在3月份

B. 2017年1月至12月的仓储指数的中位数为54%

C. 2017年1月至4月的仓储指数比2016年同期波动性更大

D. 2017年11月的仓储指数较上月有所回落,显示出仓储业务活动仍然较为活跃,经济运行稳中向好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)讨论的单调区间;

(2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,,平面平面.

(1)求证:

(2)若,直线与平面所成角为的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,的中点,将沿直线翻折成,连结的中点,则在翻折过程中,下列说法中所有正确的序号是_______.

①存在某个位置,使得

②翻折过程中,的长是定值;

③若,则

④若,当三棱锥的体积最大时,三棱锥的外接球的表面积是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面,点的中点.

1)求证:平面平面

2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业开发一种新产品,现准备投入适当的广告费对产品进行促销,在一年内,预计年销量(万件)与广告费(万元)之间的函数关系为,已知生产此产品的年固定投入为万元,每生产万件此产品仍需要投入万元,若年销售额为年生产成本的年广告费的之和,而当年产销量相等:

1)试将年利润(万元)表示为年广告费(万元)的函数;

2)求当年广告费投入多少万元时,企业利润最大?

查看答案和解析>>

同步练习册答案