【题目】已知, .
(1)当时,求函数在上的最大值;
(2)对任意的,都有成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ﹣k( +lnx),若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为( )
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M: 和点 ,动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.
(1)求曲线E的方程;
(2)点A是曲线E与x轴正半轴的交点,点B,C在曲线E上,若直线AB,AC的斜率分别是k1 , k2 , 满足k1k2=9,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1;
(2)求证:AC1∥平面CDB1;
(3)求异面直线AC1与B1C所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C过点M(0,-2)、N(3,1),且圆心C在直线x+2y+1=0上.
(1)求圆C的方程;
(2)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1(﹣c,0)、F2(c,0)分别是椭圆G: 的左、右焦点,点M是椭圆上一点,且MF2⊥F1F2 , |MF1|﹣|MF2|= a.
(1)求椭圆G的方程;
(2)若斜率为1的直线l与椭圆G交于A、B两点,以AB为底作等腰三角形,顶点为P(﹣3,2),求△PAB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是两条不同的直线, 是三个不同的平面,给出下列四个命题:
①若,则 ②若,则
③若,则 ④若,则
其中正确命题的序号是( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com