精英家教网 > 高中数学 > 题目详情
2.复数$\frac{2-i}{1+i}$(i为虚数单位)的模为$\frac{\sqrt{10}}{2}$.

分析 由复数代数形式的乘除运算化简复数$\frac{2-i}{1+i}$,再由复数求模公式计算得答案.

解答 解:$\frac{2-i}{1+i}$=$\frac{(2-i)(1-i)}{(1+i)(1-i)}=\frac{1-3i}{2}=\frac{1}{2}-\frac{3}{2}i$,
则复数$\frac{2-i}{1+i}$的模为:$\sqrt{(\frac{1}{2})^{2}+(-\frac{3}{2})^{2}}=\frac{\sqrt{10}}{2}$.
故答案为:$\frac{\sqrt{10}}{2}$.

点评 本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知集合{a,b,c}={0,1,3},且下列三个关系:①a≠3;②b=3;③c≠0有且只有一个正确,则10a+5b+c等于31.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z满足(1+i)z=2i,则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在数列中{an}中,a1=2,a4=9,{bn}是等比数列,且bn=an-1
(1)求{an}的通项公式;
(2)求{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面内的动点(x,y)满足不等式$\left\{\begin{array}{l}{x+y-3≤0}\\{x-y+1≥0}\end{array}\right.$,则z=2x+y的取值范围是(  )
A.(-∞,+∞)B.(-∞,4]C.[4,+∞)D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+$\frac{1}{2}$x2-4x.
(1)求f′(x);
(2)求函数在区间[-2,2]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=x2+ax+b(a,b∈R),记集合A={x∈R|f(x)≤0},B={x∈R|f(f(x)+1)≤0},若A=B≠∅,则实数a的取值范围为(  )
A.[-4,4]B.[-2,2]C.[-2,0]D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=log32,b=ln2,c=5-0.5,则(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数在区间[0,+∞)上是增函数的是(  )
①y=2x ②y=x2+2x-1 ③y=|x+2|④y=|x|+2.
A.①②B.①③C.②③④D.①②③④

查看答案和解析>>

同步练习册答案