【题目】已知函数.
(1)若曲线在点处的切线斜率为1,求函数的单调区间;
(2)若时,恒成立,求实数的取值范围.
【答案】(1)在上单调递增;(2).
【解析】试题分析:(1)求出,由,∴,令求得 的范围,可得函数增区间,求得 的范围,可得函数的减区间;(2)时,恒成立等价于恒成立,讨论、,两种情况,分别利用导数研究函数的单调性,求出函数的最小值,解不等式即可的结果.
试题解析:(1)∵ ,∴,∴,
∴ ,记,∴,
当时,,单减;
当时,, 单增,
∴,
故恒成立,所以在上单调递增
(2)∵,令,∴,
当时,,∴在上单增,∴.
ⅰ)当即时,恒成立,即,∴在上单增,
∴,,所以.
ⅱ)当即时,∵在上单增,且,
当 时,,
∴使,即.
当时,,即单减;
当时,,即单增.
∴ ,
∴,,由,∴.
记,
∴,∴在上单调递增,
∴,∴.
综上.
科目:高中数学 来源: 题型:
【题目】请认真阅读下列程序框图,然后回答问题,其中n0∈N.
(1)若输入n0=0,写出所输出的结果;
(2)若输出的结果中有5,求输入的自然数n0的所有可能的值;
(3)若输出的结果中,只有三个自然数,求输入的自然数n0的所有可能的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= 的定义域为(﹣1,1),满足f(﹣x)=﹣f(x),且f( )= .
(1)求函数f(x)的解析式;
(2)证明f(x)在(﹣1,1)上是增函数;
(3)解不等式f(x2﹣1)+f(x)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.
(1)求证:平面AA1C⊥平面BA1C;
(2)若AC=BC,求几何体A1﹣ABC的体积V.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= (x2﹣2ax+3).
(1)若f(x)的定义域为R,求a的取值范围;
(2)若f(﹣1)=﹣3,求f(x)单调区间;
(3)是否存在实数a,使f(x)在(﹣∞,2)上为增函数?若存在,求出a的范围?若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,互相垂直的两条公路AP、AQ旁有一矩形花园ABCD,现欲将其扩建成一个更大的三角形花园AMN,要求点M在射线AP上,点N在射线AQ上,且直线MN过点C,其中AB=36米,AD=20米.记三角形花园AMN的面积为S. (Ⅰ)问:DN取何值时,S取得最小值,并求出最小值;
(Ⅱ)若S不超过1764平方米,求DN长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设二次函数,关于的不等式的解集有且只有一个元素.
(1)设数列的前项和,求数列的通项公式;
(2)记,则数列中是否存在不同的三项成等比数列?若存在,求出这三项,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是定义在上的奇函数.
(1)当时, ,若当时, 恒成立,求的最小值;
(2)若的图像关于对称,且时, ,求当时, 的解析式;
(3)当时, .若对任意的,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆和直线: ,椭圆的离心率,坐标原点到直线的距离为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知定点,若直线过点且与椭圆相交于两点,试判断是否存在直线,使以为直径的圆过点?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com