ÏÂÁÐÃüÌ⣺
¢Ùk£¾4ÊÇ·½³Ìx2+y2+2kx+4y+3k+8=0±íʾԲµÄ³äÒªÌõ¼þ£»
¢Ú°Ñy=sinxµÄͼÏóÏòÓÒƽÒÆ
¦Ð
3
µ¥Î»£¬ÔÙ±£³Ö×Ý×ø±ê²»±ä£¬ºá×ø±ê±äΪԭÀ´µÄ
1
2
£¬µÃµ½º¯Êýy=sin£¨2x-
¦Ð
3
£©µÄͼÏó£»
¢Ûº¯Êýf£¨x£©=sin£¨2x+
¦Ð
3
£©ÔÚ[0£¬
¦Ð
6
]ÉÏΪÔöº¯Êý£»
¢ÜÍÖÔ²
x2
m
+
y2
4
=1µÄ½¹¾àΪ2£¬ÔòʵÊýmµÄÖµµÈÓÚ5£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ£¨¡¡¡¡£©
A¡¢¢Ù¢Û¢ÜB¡¢¢Ú¢Û¢ÜC¡¢¢Ú¢ÜD¡¢¢Ú
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺¼òÒ×Âß¼­
·ÖÎö£º¢Ù·½³Ìx2+y2+2kx+4y+3k+8=0»¯Îª£¨x+k£©2+£¨y+2£©2=k2-3k-8£¬ÓÉk2-3k-4£¾0£¬½âµÃk£¾4»òk£¼-1£¬¼´¿ÉÅжϳö£»
¢Ú°Ñy=sinxµÄͼÏóÏòÓÒƽÒÆ
¦Ð
3
µ¥Î»¿ÉµÃy=sin(x-
¦Ð
3
)
£¬ÔÙ±£³Ö×Ý×ø±ê²»±ä£¬ºá×ø±ê±äΪԭÀ´µÄ
1
2
£¬µÃµ½º¯Êýy=sin£¨2x-
¦Ð
3
£©µÄͼÏó£»
¢Ûx¡Ê[0£¬
¦Ð
6
]£¬¿ÉµÃ(2x+
¦Ð
3
)
¡Ê[
¦Ð
3
£¬
2¦Ð
3
]
£¬¿ÉµÃº¯Êýf£¨x£©=sin£¨2x+
¦Ð
3
£©ÔÚ[0£¬
¦Ð
6
]Éϲ»¾ßÓе¥µ÷ÐÔ£»
¢ÜÍÖÔ²
x2
m
+
y2
4
=1µÄ½¹¾àΪ2£¬Ôò4-m=1»òm-4=1£¬½âµÃm=3»ò5£®¼´¿ÉÅжϳö£®
½â´ð£º ½â£º¢Ù·½³Ìx2+y2+2kx+4y+3k+8=0»¯Îª£¨x+k£©2+£¨y+2£©2=k2-3k-8£¬ÓÉk2-3k-4£¾0£¬½âµÃk£¾4»òk£¼-1£¬
Òò´Ëk£¾4»òk£¼-1ÊÇ·½³Ìx2+y2+2kx+4y+3k+8=0±íʾԲµÄ³äÒªÌõ¼þ£¬Òò´Ë²»ÕýÈ·£»
¢Ú°Ñy=sinxµÄͼÏóÏòÓÒƽÒÆ
¦Ð
3
µ¥Î»¿ÉµÃy=sin(x-
¦Ð
3
)
£¬ÔÙ±£³Ö×Ý×ø±ê²»±ä£¬ºá×ø±ê±äΪԭÀ´µÄ
1
2
£¬µÃµ½º¯Êýy=sin£¨2x-
¦Ð
3
£©µÄͼÏó£¬ÕýÈ·£»
¢Ûx¡Ê[0£¬
¦Ð
6
]£¬¿ÉµÃ(2x+
¦Ð
3
)
¡Ê[
¦Ð
3
£¬
2¦Ð
3
]
£¬Òò´Ëº¯Êýf£¨x£©=sin£¨2x+
¦Ð
3
£©ÔÚ[0£¬
¦Ð
6
]Éϲ»ÎªÔöº¯Êý£¬²»ÕýÈ·£»
¢ÜÍÖÔ²
x2
m
+
y2
4
=1µÄ½¹¾àΪ2£¬Ôò4-m=1»òm-4=1£¬½âµÃm=3»ò5£®Òò´Ë²»ÕýÈ·£®
×ÛÉϿɵãºÖ»ÓТÚÕýÈ·£®
¹ÊÑ¡£ºD£®
µãÆÀ£º±¾Ì⿼²éÁ˼òÒ×Âß¼­µÄÅж¨¡¢Ô²µÄÒ»°ãʽ¡¢Èý½Çº¯Êý±ä»»¼°Æäµ¥µ÷ÐÔ¡¢ÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬ÒÑÖª½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÇÒa2=b2+c2+bc£®Ôò¡ÏA=£¨¡¡¡¡£©
A¡¢
¦Ð
3
B¡¢
¦Ð
6
C¡¢
2¦Ð
3
D¡¢
¦Ð
3
»ò
2¦Ð
3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÓÐÇîÊýÁÐ{an}¸÷Ïî¾ù²»ÏàµÈ£¬½«{an}µÄÏî´Ó´óµ½Ð¡ÖØÐÂÅÅÐòºóÏàÓ¦µÄÏîÊý¹¹³ÉÐÂÊýÁÐ{pn}£¬³Æ{pn}Ϊ{an}µÄ¡°ÐòÊýÁС±£¬ÀýÈçÊýÁУºa1£¬a2£¬a3Âú×ãa1£¾a3£¾a2£¬ÔòÆäÐòÊýÁÐ{pn}Ϊ1£¬3£¬2£»
£¨1£©Ð´³ö¹«²îΪd£¨d¡Ù0£©µÄµÈ²îÊýÁÐa1£¬a2£¬¡­£¬anµÄÐòÊýÁÐ{pn}£»
£¨2£©ÈôÏîÊý²»ÉÙÓÚ5ÏîµÄÓÐÇîÊýÁÐ{bn}¡¢{cn}µÄͨÏʽ·Ö±ðÊÇbn=n•(
3
5
)n
£¨n¡ÊN*£©£¬cn=-n2+tn£¨n¡ÊN*£©£¬ÇÒ{bn}µÄÐòÊýÁÐÓë{cn}µÄÐòÊýÁÐÏàͬ£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£»
£¨3£©ÈôÓÐÇîÊýÁÐ{dn}Âú×ãd1=1£¬|dn+1-dn|=(
1
2
)n
£¨n¡ÊN*£©£¬ÇÒ{d2n-1}µÄÐòÊýÁе¥µ÷µÝ¼õ£¬{d2n}µÄÐòÊýÁе¥µ÷µÝÔö£¬ÇóÊýÁÐ{dn}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁк¯ÊýÖУ¬¿ÉÒÔÊÇÆ溯ÊýµÄΪ£¨¡¡¡¡£©
A¡¢f£¨x£©=£¨x-a£©|x|£¬a¡ÊR
B¡¢f£¨x£©=x2+ax+1£¬a¡ÊR
C¡¢f£¨x£©=log2£¨ax-1£©£¬a¡ÊR
D¡¢f£¨x£©=ax+cosx£¬a¡ÊR

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏÂÁÐËĸöÃüÌ⣺
¢ÙUΪȫ¼¯£¬A¡¢BÊǼ¯ºÏ£¬Ôò¡°´æÔÚ¼¯ºÏCʹµÃA⊆C£¬B⊆∁UC¡±ÊÇ¡°A¡ÉB=∅¡±µÄ³äÒªÌõ¼þ£»
¢ÚÒÑÖªÃüÌâp£ºÈôx£¾y£¬Ôò-x£¼-y£¬ÃüÌâq£ºÈôx£¾y£¬Ôòx2£¾y2£¬ÃüÌâp¡Ä£¨©Vq£©ÎªÕæÃüÌ⣻
¢ÛÃüÌâ¡°¶ÔÈÎÒâx¡ÊR£¬¶¼ÓÐx2¡Ý0¡±ÊÇ·ñ¶¨Îª¡°²»´æÔÚx¡ÊR£¬¶¼ÓÐx2£¼0¡±£»
¢ÜÒ»ÎïÌåÑØÖ±ÏßÒÔv=2t+3£¨tµÄµ¥Î»£ºs£¬vµÄµ¥Î»£ºm/s£©µÄËÙ¶ÈÔ˶¯£¬ÔòÎïÌåÔÚ3¡«5s¼ä½øÐеÄ·³ÌÊÇ22m£¬ÆäÖÐÕæÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
A¡¢0B¡¢1C¡¢2D¡¢3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏM={x¡ÊR|0£¼x£¼2}£¬N={x¡ÊR|x£¾1}£¬ÔòM¡É£¨∁UN£©=£¨¡¡¡¡£©
A¡¢[1£¬2£©
B¡¢£¨1£¬2£©
C¡¢£¨0£¬1]
D¡¢[0£¬1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÓÃC£¨A£©±íʾ·Ç¿Õ¼¯ºÏAÖÐÔªËصĸöÊý£¬¶¨ÒåA*B=
C(A)-C(B)
C(B)-C(A)
C(A)¡ÝC(B)
C(A)£¼C(B)
£¬ÈôA={1£¬2}£¬B={x|£¨x2+ax£©£¨x2+ax+2£©=0}£¬ÇÒA*B=1£¬ÉèʵÊýaµÄËùÓпÉÄÜÈ¡Öµ¹¹³É¼¯ºÏS£¬ÔòC£¨S£©=£¨¡¡¡¡£©
A¡¢1B¡¢2C¡¢3D¡¢4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
a
=£¨cos¦Á£¬sin¦Á£©£¬
b
=£¨cos¦Â£¬sin¦Â£©£¬0£¼¦Á£¼¦Â£¼¦Ð£®
£¨1£©Èô
a
¡Í
b
£¬Çó|
a
-
b
|掙术
£¨2£©Éè 
c
=£¨0£¬1£©£¬Èô
a
+
b
=
c
£¬Çó¦Á£¬¦ÂµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
a
=£¨1£¬2£©£¬
b
=£¨1£¬0£©£¬
c
=£¨3£¬4£©£¬Èô¦ËΪʵÊý£¬£¨
b
+¦Ë
a
£©¡Í
c
£¬Ôò¦ËµÄֵΪ£¨¡¡¡¡£©
A¡¢-
3
11
B¡¢-
11
3
C¡¢
1
2
D¡¢
3
5

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸