精英家教网 > 高中数学 > 题目详情
(2012•淮南二模)在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC,bcosB,c cosA成等差数列.
(I)求角B的大小;
(Ⅱ)若b=
3
,试求△ABC面积S的最大值.
分析:(I)由题意可得2bcosB=acosC+c•cosA,由正弦定理可得 2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,解得cosB=
1
2
,从而求出角B.
(Ⅱ)由余弦定理可得3=a2+c2-ac,再由 a2+c2≥2ac,可得 3≥ac,故有ABC面积S=
1
2
ac•sinB
3
2
×
3
2
,由此得到S的最大值.
解答:解:(I)由题意可得,在△ABC中,2bcosB=acosC+c•cosA,由正弦定理可得 2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,
∴cosB=
1
2
,∴角B=
π
3

∵(Ⅱ)若b=
3
,∵B=
π
3
,由余弦定理可得 b2=a2+c2-2ac•cosB,即 3=a2+c2-ac.
再由  a2+c2≥2ac,可得 3≥ac,∴△ABC面积S=
1
2
ac•sinB
3
2
×
3
2
=
3
3
4

故△ABC面积S的最大值为
3
3
4
点评:本题主要考查等差数列的定义和性质,利用正弦定理和余弦定理解三角形,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•淮南二模)已知函数f(x)对任意x∈R都有f(x+4)-f(x)=2f(2),若y=f(x-1)的图象关于直线x=1对称,且f(1)=2,则f(1003)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)设z=
1+i
1-i
,则z4=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)已知全集U=R,M={x|y=ln(1-x)},N={x|2x(x-2)<1},则(?UM)∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)设随机变量ξ服从正态分布N(3,?2,若P(ξ>m)=a,则P(ξ>6-m)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)已知函数f(x)=
x+1,(-1≤x≤0)
1-x2
,(0<x≤1)
,则
1
-1
f(x)dx
=(  )

查看答案和解析>>

同步练习册答案