精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=x2-2x,g(x)=ax+2(a>0),若对任意x1∈R,都存在x2∈[-2,+∞),使得f(x1)>g(x2),则实数a的取值范围是(  )
A.$({\frac{3}{2},+∞})$B.(0,+∞)C.$({0,\frac{3}{2}})$D.$({\frac{3}{2},3})$

分析 确定函数f(x)、g(x)的值域,根据对任意的x1∈R都存在x2∈[-2,+∞),使得f(x1)>g(x2),可f(x)值域是g(x)值域的子集,从而得到实数a的取值范围.

解答 解:∵函数f(x)=x2-2x的图象是开口向上的抛物线,且关于直线x=1对称
∴f(x)的最小值为f(1)=-1,无最大值,
可得f(x1)值域为[-1,+∞),
又∵g(x)=ax+2(a>0),x2∈[-2,+∞),
∴g(x)=ax+2(a>0)为单调增函数,g(x2)值域为[g(-2),+∞),
即g(x2)∈[2-2a,+∞),
∵对任意的x1∈R都存在x2∈[-2,+∞),使得f(x1)>g(x2),
∴只需f(x)值域是g(x)值域的子集即可,
∴2-2a<-1,解得:a>$\frac{3}{2}$,
故选:A.

点评 本题考查了函数的值域,考查学生分析解决问题的能力,解题的关键是对“任意”、“存在”的理解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若点A是不等式组$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,所表示的平面区域内的一个动点,点B是直线y=1上的动点,O为坐标原点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$取得最大值时的最优解不唯一,则点B的横坐标是1或-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.椭圆$\frac{x^2}{36}+\frac{y^2}{9}=1$上有动P(m,n),则m+2n的取值范围为[-6$\sqrt{2}$,6$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.过点A(-1,-2)且焦点与椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{9}$=1的两个焦点相同的椭圆的标准方程是$\frac{{y}^{2}}{6}+\frac{{x}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用二分法求方程2x+x-8=0的一个实数解(精确度0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线x-2y+3=0与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$相交于A,B两点,且P(-1,1)恰好为AB中点,则椭圆的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$\frac{{x}^{2}}{3{m}^{2}}$+$\frac{{y}^{2}}{5{n}^{2}}$=1和双曲线$\frac{{x}^{2}}{2{m}^{2}}$-$\frac{{y}^{2}}{3{n}^{2}}$=1有公共的焦点.
(1)求双曲线的渐近线方程;
(2)直线l过右焦点且垂直于x轴,若直线l与双曲线的渐近线围成的三角形的面积为$\frac{\sqrt{3}}{4}$,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在平面直角坐标系xOy中,点A(-2,6)关于直线3x-4y+5=0的对称点的坐标为(4,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列四组函数中,相等的两个函数是(  )
A.f(x)=x,g(x)=$\frac{{x}^{2}}{x}$B.f(x)=2lgx,g(x)=lgx2C.f(x)=($\sqrt{x}$)2,g(x)=xD.f(x)=x,g(t)=t

查看答案和解析>>

同步练习册答案