精英家教网 > 高中数学 > 题目详情
如图,矩形纸板ABCD的顶点AB分别在正方形边框EOFG的边OEOF上,当点BOF边上进行左右运动时,点A随之在OE上进行上下运动.若AB=8,BC=3,运动过程中,则点D到点O距离的最大值为
A.B.9C.D.
B

试题分析:因为是直角三角形,所以不论A,B怎样移动,点O始终在的外接圆上,的中点为外接圆的圆心,所以当点O,D和的中点共线时,点D到点O距离最大,此时最大距离为
点评:解决本小题的关键是找出当点O,D和的中点共线时,点D到点O距离最大,解决此类问题,要注意灵活转化.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

是奇函数,且在区间上是单调增函数,又,则的解集为                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(Ⅰ) 当时,求函数的极值;
(Ⅱ)当时,讨论函数的单调性.
(Ⅲ)若对任意及任意,恒有 成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数上的最大值和最小值分别是     (   )  
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,试判断并证明函数的单调性;
(2)当时,求函数的最大值的表达式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

判断函数f(x)=在区间(1,+∞)上的单调性,并用单调性定义证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中.
(1)当时,求在曲线上一点处的切线方程;
(2)求函数的极值点。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若时,取得极值,求实数的值;   
(2)求上的最小值;
(3)若对任意,直线都不是曲线的切线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分) 已知为实数,
(1)若,求的单调区间;
(2)若,求在[-2,2] 上的最大值和最小值。

查看答案和解析>>

同步练习册答案