ÒÑÖªº¯Êýy=x+
a
x
ÓÐÈçÏÂÐÔÖÊ£ºÈç¹û³£Êýa£¾0£¬ÄÇô¸Ãº¯ÊýÔÚ£¨0£¬
a
]ÉÏÊǼõº¯Êý£¬ÔÚ[
a
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®
£¨1£©Èç¹ûº¯Êýy=x+
2b
x
£¨x£¾0£©µÄÖµÓòΪ[6£¬+¡Þ£©£¬ÇóbµÄÖµ£»
£¨2£©Ñо¿º¯Êýy=x2+
c
x2
£¨³£Êýc£¾0£©ÔÚ¶¨ÒåÓòÄڵĵ¥µ÷ÐÔ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©¶Ôº¯Êýy=x+
a
x
ºÍy=x2+
a
x2
£¨³£Êýa£¾0£©×÷³öÍƹ㣬ʹËüÃǶ¼ÊÇÄãËùÍƹãµÄº¯ÊýµÄÌØÀý£®Ñо¿ÍƹãºóµÄº¯ÊýµÄµ¥µ÷ÐÔ£¨Ö»Ðëд³ö½áÂÛ£¬²»±ØÖ¤Ã÷£©£¬²¢Çóº¯ÊýF£¨x£©=(x2+
1
x
)n
+(
1
x2
+x)n
£¨nÊÇÕýÕûÊý£©ÔÚÇø¼ä[
1
2
£¬2]ÉϵÄ×î´óÖµºÍ×îСֵ£¨¿ÉÀûÓÃÄãµÄÑо¿½áÂÛ£©£®
£¨1£©º¯Êýy=x+
2b
x
£¨x£¾0£©µÄ×îСֵÊÇ2
2b
£¬Ôò2
2b
=6£¬
¡àb=log29£®
£¨2£©Éè0£¼x1£¼x2£¬y2-y1=
x22
+
c
x22
-
x21
-
c
x21
=(
x22
-
x21
)(1-
c
x21
x22
)
£®
µ±
4c
£¼x1£¼x2ʱ£¬y2£¾y1£¬º¯Êýy=x2+
c
x2
ÔÚ[
4c
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£»
µ±0£¼x1£¼x2£¼
4c
ʱy2£¼y1£¬º¯Êýy=x2+
c
x2
ÔÚ£¨0£¬
4c
]ÉÏÊǼõº¯Êý£®
ÓÖy=x2+
c
x2
ÊÇżº¯Êý£¬ÓÚÊÇ£¬
¸Ãº¯ÊýÔÚ£¨-¡Þ£¬-
4c
]ÉÏÊǼõº¯Êý£¬ÔÚ[-
4c
£¬0£©ÉÏÊÇÔöº¯Êý£»
£¨3£©¿ÉÒ԰Ѻ¯ÊýÍƹãΪy=xn+
a
xn
£¨³£Êýa£¾0£©£¬ÆäÖÐnÊÇÕýÕûÊý£®
µ±nÊÇÆæÊýʱ£¬º¯Êýy=xn+
a
xn
ÔÚ£¨0£¬
2na
]ÉÏÊǼõº¯Êý£¬ÔÚ[
2na
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
ÔÚ£¨-¡Þ£¬-
2na
]ÉÏÊÇÔöº¯Êý£¬ÔÚ[-
2na
£¬0£©ÉÏÊǼõº¯Êý£»
µ±nÊÇżÊýʱ£¬º¯Êýy=xn+
a
xn
ÔÚ£¨0£¬
2na
]ÉÏÊǼõº¯Êý£¬ÔÚ[
2na
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
ÔÚ£¨-¡Þ£¬-
2na
]ÉÏÊǼõº¯Êý£¬ÔÚ[-
2na
£¬0£©ÉÏÊÇÔöº¯Êý£»
F£¨x£©=(x2+
1
x
)n
+(
1
x2
+x)n

=
C0n
(x2n+
1
x2n
)
+C1n
(x2n-2+
1
x2n-3
)
+¡­+
Crn
(x2n-3r+
1
x2n-3r
)+¡­+
Cnn
(xn+
1
xn
)
£¬
Òò´ËF£¨x£©ÔÚ[
1
2
£¬1]ÉÏÊǼõº¯Êý£¬ÔÚ[1£¬2]ÉÏÊÇÔöº¯Êý£®
ËùÒÔ£¬µ±x=
1
2
»òx=2ʱ£¬F£¨x£©È¡µÃ×î´óÖµ£¨
9
2
£©n+£¨
9
4
£©n£»
µ±x=1ʱF£¨x£©È¡µÃ×îСֵ2n+1£»
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýy=x+
a
x
ÓÐÈçÏÂÐÔÖÊ£ºÈç¹û³£Êýa£¾0£¬ÄÇô¸Ãº¯ÊýÔÚ£¨0£¬
a
]ÉÏÊǼõº¯Êý£¬ÔÚ[
a
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®
£¨¢ñ£©Èç¹ûº¯Êýy=x+
2b
x
£¨x£¾0£©µÄÖµÓòΪ[6£¬+¡Þ£©£¬ÇóbµÄÖµ£»
£¨¢ò£©Ñо¿º¯Êýy=x2+
c
x2
£¨³£Êýc£¾0£©ÔÚ¶¨ÒåÓòÄڵĵ¥µ÷ÐÔ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ó£©¶Ôº¯Êýy=x+
a
x
ºÍy=x2+
a
x2
£¨³£Êýa£¾0£©×÷³öÍƹ㣬ʹËüÃǶ¼ÊÇÄãËùÍƹãµÄº¯ÊýµÄÌØÀý£®Ñо¿ÍƹãºóµÄº¯ÊýµÄµ¥µ÷ÐÔ£¨Ö»Ðëд³ö½áÂÛ£¬²»±ØÖ¤Ã÷£©£¬²¢Çóº¯ÊýF£¨x£©=£¨x2+
1
x
£©n+£¨
1
x2
+x
£©n£¨nÊÇÕýÕûÊý£©ÔÚÇø¼ä[
1
2
£¬2]ÉϵÄ×î´óÖµºÍ×îСֵ£¨¿ÉÀûÓÃÄãµÄÑо¿½áÂÛ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýy=x+
a
x
µ©£¨a£¾0£©ÓÐÈçϵÄÐÔÖÊ£ºÔÚÇø¼ä£¨0£¬
a
]Éϵ¥µ÷µÝ¼õ£¬ÔÚ[
a
£¬+¡Þ£©Éϵ¥µ÷µÝÔö£®
£¨1£©Èç¹ûº¯Êýf£¨x£©=x+
2b
x
ÔÚ£¨0£¬4]Éϵ¥µ÷µÝ¼õ£¬ÔÚ[4£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬Çó³£ÊýbµÄÖµ£®
£¨2£©Éè³£Êýa¡Ê[l£¬4]£¬Çóº¯Êýy=x+
a
x
ÔÚx¡Ê[l£¬2]µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýy=x+
a
x
ÓÐÈçÏÂÐÔÖÊ£ºÈç¹û³£Êýa£¾0£¬ÄÇô¸Ãº¯ÊýÔÚ£¨0£¬
a
ÉÏÊǼõº¯Êý£¬ÔÚ
a
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®
£¨1£©Èç¹ûº¯Êýy=x+
2b
x
ÔÚ£¨0£¬4£©ÉÏÊǼõº¯Êý£¬ÔÚ£¨4£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬Çóʵ³£ÊýbµÄÖµ£»
£¨2£©Éè³£Êýc¡Ê1£¬4£¬Çóº¯Êýf£¨x£©=x+
c
x
£¨1¡Üx¡Ü2£©µÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýy=x+
a
x
£¨x£¾0£©ÓÐÈçÏÂÐÔÖÊ£ºÈç¹û³£Êýa£¾0£¬ÄÇô¸Ãº¯ÊýÔÚ£¨0£¬
a
]ÉÏÊǼõº¯Êý£¬ÔÚ[
a
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®
£¨1£©Èç¹ûº¯Êýy=x+
b2
x
£¨x£¾0£©µÄÖµÓòΪ[6£¬+¡Þ£©£¬ÇóbµÄÖµ£»
£¨2£©Ñо¿º¯Êýy=x2+
c
x2
£¨x£¾0£¬³£Êýc£¾0£©ÔÚ¶¨ÒåÓòÄڵĵ¥µ÷ÐÔ£¬²¢Óö¨ÒåÖ¤Ã÷£¨ÈôÓжà¸öµ¥µ÷Çø¼ä£¬ÇëÑ¡ÔñÒ»¸öÖ¤Ã÷£©£»
£¨3£©¶Ôº¯Êýy=x+
a
x
ºÍy=x2+
a
x2
£¨x£¾0£¬³£Êýa£¾0£©×÷³öÍƹ㣬ʹËüÃǶ¼ÊÇÄãËùÍƹãµÄº¯ÊýµÄÌØÀý£®Ñо¿ÍƹãºóµÄº¯ÊýµÄµ¥µ÷ÐÔ£¨Ö»Ðëд³ö½áÂÛ£¬²»±ØÖ¤Ã÷£©£¬²¢Çóº¯ÊýF£¨x£©=(x2+
1
x
)2
+(
1
x2
+x)2
ÔÚÇø¼ä[
1
2
£¬2]ÉϵÄ×î´óÖµºÍ×îСֵ£¨¿ÉÀûÓÃÄãµÄÑо¿½áÂÛ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýy=x+
a
x
ÓÐÈçÏÂÐÔÖÊ£ºÈç¹û³£Êýa£¾0£¬ÄÇô¸Ãº¯ÊýÔÚ(0£¬
a
]
ÉÏÊǼõº¯Êý£¬ÔÚ[
a
£¬+¡Þ)
ÉÏÊÇÔöº¯Êý£¬
£¨1£©Èç¹ûº¯Êýy=x+
3m
x
(x£¾0)
µÄÖµÓòÊÇ[6£¬+¡Þ£©£¬ÇóʵÊýmµÄÖµ£»
£¨2£©Ñо¿º¯Êýf(x)=x2+
a
x2
£¨³£Êýa£¾0£©ÔÚ¶¨ÒåÓòÄڵĵ¥µ÷ÐÔ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©Èô°Ñº¯Êýf(x)=x2+
a
x2
£¨³£Êýa£¾0£©ÔÚ[1£¬2]ÉϵÄ×îСֵ¼ÇΪg£¨a£©£¬Çóg£¨a£©µÄ±í´ïʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸