精英家教网 > 高中数学 > 题目详情
如图,F为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点,P为椭圆上一点,O为原点,记△OFP的面积为S,且
OF
FP
=1

(1)设
1
2
<S<
3
2
,求向量
OF
FP
夹角的取值范围.
(2)设|
OF
|=c
S=
3
4
c
,当c≥2时,求当|
OP
|
取最小值时的椭圆方程.
分析:(1)由
OF
FP
=1
|
OF
|•|
FP
|cosθ=1
,由S=
1
2
|
OF
|•|
FP
|sin(π-θ)
,借助于
1
2
<S<
3
2
,可得1<tanθ<
3
,从而求出向量
OF
FP
夹角的取值范围.
(2)由题意|
OP
|=
x
2
0
+
y
2
0
=
(c+
1
c
)
2
+
9
4
由单调性可知当c=2时有最小值,从而可求椭圆的方程.
解答:解:(1)设
OF
FP
的夹角为θ,由题意得
OF
FP
=|
OF
|•|
FP
|cosθ=1
S=
1
2
|
OF
|•|
FP
|sin(π-θ)
…(2分)
两式相除可得tanθ=2S,又
1
2
<S<
3
2
,所以1<tanθ<
3
…(2分)
所以向量
OF
FP
夹角的取值范围是45°<θ<60°…(1分)
(2)设P(x0,y0),F(c,0),所以
OF
=(c,0)
FP
=(x0-c,y0)

所以
OF
FP
=c(x0-c)=1
,即x0=c+
1
c
…(1分)
所以S=
1
2
c|y0|=
3
4
c
|y0|=
3
2
…(1分)
所以|
OP
|=
x
2
0
+
y
2
0
=
(c+
1
c
)
2
+
9
4
…(2分)
由单调性可知当c=2时有最小值,此时x0=
5
2
,…1分|y0|=3,此时F1(-2,0),F2(2,0),所以2a=PF1+PF2=
(
5
2
+2)
2
+
9
4
+
(
5
2
-2)
2
+
9
4
=2
10
…(2分)
所以椭圆方程为
x2
10
+
y2
6
=1
…(2分)
点评:本题主要考查向量的数量积,考查椭圆标准非常的求解,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,F是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点,A、B是椭圆的两个顶点,椭圆的离心率为
1
2
,点C在x轴上,BC⊥BF,由B、C、F三点确定的圆M恰好与直线x+
3
y+3=0
相切.
(I)求椭圆的方程;
(II)过F作一条与两坐标轴都不垂直的直线l交椭圆于P、Q两点,若在x轴上存在一点N(x0,0),使得直线NP与直线NQ关于x轴对称,求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,F是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为
1
2
.点C在x轴上,BC⊥BF,B,C,F三点确定的圆M的半径为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点A的直线l与圆M交于P、Q两点,且
MP
MQ
=-2
求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,F是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点,A,B分别是椭圆的两个顶点,椭圆的离心率为
1
2
,点C在x轴上,BC⊥BF,B,C,F三点确定的圆M恰好与直线l1:x+
3
y+3=0
相切
(1)求椭圆的方程;
(2)过点A的直线l2与圆M交于P,Q两点,且
MP
MQ
=-2
,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点,P为椭圆上一点,O为原点,记△OFP的面积为S,且
OF
FP
=1

(1)设
1
2
<S<
3
2
,求向量
OF
FP
夹角的取值范围.
(2)设|
OF
|=c
S=
3
4
c
,当c≥2时,求当|
OP
|
取最小值时的椭圆方程.
精英家教网

查看答案和解析>>

同步练习册答案