【题目】如图,用虚线表示的网格的小正方形边长为1,实线表示某几何体的三视图,则此几何体的外接球半径为( )
A.
B.
C.2
D.
科目:高中数学 来源: 题型:
【题目】已知向量 , ,设 .
(Ⅰ)若f(α)=2,求 的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a﹣b)cosC=ccosB,求f(A)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某化工厂为预测产品的回收率 ,需要研究它和原料有效成分含量 之间的相关关系,现收集了4组对照数据。
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(Ⅰ)请根据相关系数 的大小判断回收率 与 之间是否存在高度线性相关关系;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出 关于 的线性回归方程 ,并预测当 时回收率 的值.
参考数据:
1 | 0 | 其他 | |||
相关关系 | 完全相关 | 不相关 | 高度相关 | 低度相关 | 中度相关 |
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥 中,底面 为直角梯形, ,且 , 平面 .
(1)求 与平面 所成角的正弦值;
(2)棱 上是否存在一点 满足 ?若存在,求 的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区 的年平均浓度不得超过3S微克/立方米, 的24小时平均浓度不得超过75微克/立方米.某市环保局随机抽取了一居民区2016年20天 的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如图表:
组别 | 浓度(微克/立方米) | 频数(天) | 频率 |
第一组 | 3 | 0.15 | |
第二组 | 12 | 0.6 | |
第三组 | 3 | 0.15 | |
第四组 | 2 | 0.1 |
(Ⅰ)将这20天的测量结果按表中分组方法绘制成的样本频率分布直方图如图.
(ⅰ)求图中 的值;
(ⅱ)在频率分布直方图中估算样本平均数,并根据样本估计总体的思想,从 的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(Ⅱ)将频率视为概率,对于2016年的某3天,记这3天中该居民区 的24小时平均浓度符合环境空气质量标准的天数为 ,求 的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于椭圆 ,有如下性质:若点 是椭圆上的点,则椭圆在该点处的切线方程为 .利用此结论解答下列问题.
(Ⅰ)求椭圆 的标准方程;
(Ⅱ)若动点 在直线 上,经过点 的直线 与椭圆 相切,切点分别为 .求证直线 必经过一定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ( )在同一半周期内的图象过点 , , ,其中 为坐标原点, 为函数 图象的最高点, 为函数 的图象与 轴的正半轴的交点, 为等腰直角三角形.
(1)求 的值;
(2)将 绕原点 按逆时针方向旋转角 ,得到 ,若点 恰好落在曲线 ( )上(如图所示),试判断点 是否也落在曲线 ( )上,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系 中,直线 过 ,倾斜角为 .以 为极点, 轴非负半轴为极轴,建立极坐标系,曲线 的极坐标方程为 .
(Ⅰ)求直线 的参数方程和曲线 的直角坐标方程;
(Ⅱ)已知直线 与曲线 交于 、 两点,且 ,求直线 的斜率 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com