精英家教网 > 高中数学 > 题目详情

 设椭圆E: )过两点,为坐标原点,

(1)求椭圆的方程;

(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点?若存在,写出该圆的方程,并求的取值范围,若不存在说明理由.

 

 

 

 

 

 

 

 

 

 

【答案】

 解析;(1)因为椭圆E; (a,b>0)过M(2,) ,N(,1)两点,

所以解得所以椭圆E的方程为

(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组

则△=,即

要使,需使,即

所以,所以

所以,所以,即

因为直线为圆心在原点的圆的一条切线,

所以圆的半径为

所求的圆为,此时圆的切线都满足

而当切线的斜率不存在时切线为与椭圆的两个交点为满足

综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且

因为

所以

, 

①当

因为所以

所以

所以当且仅当时取”=”.

②  当时,

③  当AB的斜率不存在时, 两个交点为,所以此时

综上, |AB |的取值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)设椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)过M(2,
2
),N(
6
,1)两点,O为坐标原点,
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使该圆的任意一条切线与椭圆E恒有两个交点A、B,且
OA 
OB 
?若存在,写出该圆的方程,并求|AB|取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆E:
x2
a2
+
y2
b2
=1
(a,b>0),O为坐标原点,
(1)椭圆E:
x2
a2
+
y2
b2
=1
(a,b>0)过M(2,
2
),N(
6
,1)两点,求椭圆E的方程;
(2)若a>b>0,两个焦点为 F1(-c,0),F2(c,0),M为椭圆上一动点,且满足
F1M
F2M
=0,求椭圆离心率的范围.
(3)在(1)的条件下,是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且
OA
OB
?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点为F1(-
3
,0),而且过点H(
3
1
2
).
(1)求椭圆E的方程;
(2)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线OT与过点M,N的圆G相切,切点为G.证明:线段OT的长为定值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年四川省绵阳市高三12月月考理科数学试卷(解析版) 题型:解答题

设椭圆E:=1()过点M(2,), N(,1),为坐标原点

(I)求椭圆E的方程;

(II)是否存在以原点为圆心的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程;若不存在,说明理由。

 

查看答案和解析>>

同步练习册答案