精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=|x3-1|+x3+ax(a∈R).
(1)解关于字母a的不等式[f(-1)]2≤f(2);
(2)若a<0,求f(x)的最小值.

分析 (1)关于字母a的不等式[f(-1)]2≤f(2),即 a2-4a-14≤0,由此求得a的范围.
(2)a<0时,f(x)=|x3-1|+x3+ax=$\left\{\begin{array}{l}{{2x}^{3}+ax-1,x≥1}\\{ax+1,x<1}\end{array}\right.$,分类讨论,再利用导数研究函数的单调性,从而求得求得它的最小值.

解答 解:(1)由于函数f(x)=|x3-1|+x3+ax,关于字母a的不等式[f(-1)]2≤f(2),
即 (1-a)2≤15+2a,即 a2-4a-14≤0,解得 2-2$\sqrt{5}$≤a≤2+2$\sqrt{5}$.
(2)∵a<0,f(x)=|x3-1|+x3+ax=$\left\{\begin{array}{l}{{2x}^{3}+ax-1,x≥1}\\{ax+1,x<1}\end{array}\right.$,
若$\frac{-a}{6}$≥1,即a≤-6时,则当x>1时,f(x)=2x3+ax-1,f′(x)=6x2+a,令f′(x)=0,求得x=$\sqrt{\frac{-a}{6}}$.
故在(1,$\sqrt{\frac{-a}{6}}$)上,f′(x)<0,f(x)单调递减;
在( $\sqrt{\frac{-a}{6}}$,+∞)上,f′(x)>0,f(x)单调递增.
当x<1时,函数f(x)=ax+1,函数单调递减,故f(x)在(-∞,$\sqrt{\frac{-a}{6}}$)上单调递减,
在($\sqrt{\frac{-a}{6}}$,+∞)上单调递增,
故函数f(x)的最小值为f($\sqrt{\frac{-a}{6}}$)=$\frac{2}{3}$a•$\sqrt{\frac{-a}{6}}$-1.
若$\frac{-a}{6}$<1,即0>a>-6时,
则当x>1时,f(x)=2x3+ax-1,f′(x)=6x2+a,在(1,+∞)上,f′(x)>0,f(x)单调递增.
当x<1时,函数f(x)=ax+1,函数单调递减,
故f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增,
故f(x)的最小值为f(1)=1+a.
综上可得,fmin(x)=$\left\{\begin{array}{l}{\frac{2a}{3}•\sqrt{\frac{-a}{6}}-1,a≤-6}\\{1+a,-6<a<0}\end{array}\right.$.

点评 本题主要考查绝对值不等式的解法,一元二次不等式的解法,利用单调性求函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知命题p:$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{3}$=1是焦点在x轴上的椭圆,命题q:x2-mx+1=0有两个不相等的实数根.若p∧q为真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.曲线$\sqrt{(x+1)^{2}+{y}^{2}}$+$\sqrt{(x-1)^{2}+{y}^{2}}$=4的四个顶点连结而成的四边形面积是4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{{2}^{x}+a}{{2}^{x}+1}$为奇函数.
(1)求实数a的值;
(2)试判断函数的单调性并加以证明;
(3)对任意的x∈R,不等式f(x)<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.式子cos2($\frac{π}{4}$-α)+cos2($\frac{π}{4}$+α)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}$=1内一点P(3,1),且被这点平分的弦所在直线的方程是3x+4y-13=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=$\sqrt{x+1}$,则f(0)等于(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知△ABC的内角为A、B、C的所对的边分别为a,b,c,且A、B、C成等差数列.且△ABC的面积为4$\sqrt{3}$,则2a+3c的最小值为8$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3-6x2+3x+t,h(x)=ex,t∈R.F(x)=f(x)•h(x)
(Ⅰ)求函数f(x)的单调减区间.
(Ⅱ)若函数F(x) 依次在x=a,x=b,x=c(a<b<c)处取到极值.求t的取值范围;
(Ⅲ)若a+c=2b2,①求t的值.  ②若存在实数t∈[0,2],使对任意的x∈[1,m],不等式 F(x)≤x恒成立.求正整数m的最大值.

查看答案和解析>>

同步练习册答案