精英家教网 > 高中数学 > 题目详情

,且,证明不等式:

利用基本不等式证明即可

解析试题分析:因为,且
所以
当且仅当时等号成立.
考点:本小题主要考查不等式的证明和基本不等式的应用.
点评:解决本小题的关键是正确应用基本不等式,应用基本不等式的条件是“一正二定三相等”,三个条件缺一不可,还要注意“1”的整体代换.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由形状为长方形A1B1C1D1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米(如图所示).

(1)若设休闲区的长和宽的比=x(x>1),求公园ABCD所占面积S关于x的函数S(x)的解析式;
(2)要使公园所占面积最小,则休闲区A1B1C1D1的长和宽该如何设计?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一段长为36m的篱笆围成一个矩形菜园, 问这个矩形的长,宽各为多少时,菜园的面积最大.最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,若恒成立,
(Ⅰ)求的最小值;
(Ⅱ)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

观察下列两个结论:
(Ⅰ)若,且,则
(Ⅱ)若,且,则
先证明结论(Ⅱ),再类比(Ⅰ)(Ⅱ)结论,请你写出一个关于个正数的结论?(写出结论,不必证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某商品进货价每件50元,据市场调查,当销售价格(每件x元)为50<x≤80时,每
天售出的件数为,若要使每天获得的利润最多,销售价格每件应定为多少元

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知△ABC的顶点A(3,0),B(0,1),C(1,1),P(x,y)在△ABC内部(包括边界),若目标函数z=(a≠0)取得最大值时的最优解有无穷多组,则点(a,b)的轨迹可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知点在不等式组表示的平面区域上运动,则的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

目标函数,变量满足,则有(   )

A. B.无最小值
C. D.既无最大值,也无最小值

查看答案和解析>>

同步练习册答案