精英家教网 > 高中数学 > 题目详情
7、已知函数f(x)在R上满足f(1+x)=2f(1-x)-x2+3x+1,则曲线y=f(x)在点(1,f(1))处的切线方程是(  )
分析:对等式两边进行求对数,通过赋值求切线斜率;对等式赋值求切点坐标;据点斜式写出直线方程.
解答:解:∵f(1+x)=2f(1-x)-x2+3x+1
∴f′(1+x)=-2f′(1-x)-2x+3
∴f′(1)=-2f′(1)+3
∴f′(1)=1
f(1+x)=2f(1-x)-x2+3x+1
∴f(1)=2f(1)+1
∴f(1)=-1
∴切线方程为:y+1=x-1即x-y-2=0
故选项为A
点评:本题考查对数的几何意义,在切点处的对数值是切线斜率,求切线方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上满足y=f(x)=2f(2-x)+ex-1+x2,则曲线y=f(x)在点(1,f(1))处的切线方程是(  )
A、2x-y-1=0B、x-y-3=0C、3x-y-2=0D、2x+y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上满足2f(x)+f(1-x)=3x2-2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程是
2x-y-1=0
2x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上有定义,对任意实数a>0和任意实数x都有f(ax)=a﹒f(x).
(1)证明:f(0)=0
(2)若f(1)=1,求g(x)=
1f(x)
+f(x).(x>0)
的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上可导,函数F(x)=f(x2-4)+f(4-x2),则F′(2)=
 

查看答案和解析>>

同步练习册答案