精英家教网 > 高中数学 > 题目详情

已知yf(x)是定义在R上的奇函数,当x≤0时,f(x)=2xx2.
(1)求x>0时,f(x)的解析式;
(2)若关于x的方程f(x)=2a2a有三个不同的解,求a的取值范围.

(1)x>0时,f(x)=2xx2.
(2)-1<a<.

解析试题分析:(1)任取x>0,则-x<0,
f(-x)=-2x+(-x)2x2-2x.
f(x)是奇函数,
f(x)=-f(-x)=2xx2.
x>0时,f(x)=2xx2.
(2)∵方程f(x)=2a2a有三个不同的解,
∴-1<2a2a<1.∴-1<a<.
考点:奇函数,以及函数与方程
点评:主要是考查了函数的奇偶性以及函数与方程的问题的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知.
(1)若a=0时,求函数在点(1,)处的切线方程;
(2)若函数在[1,2]上是减函数,求实数a的取值范围;
(3)令是否存在实数a,当是自然对数的底)时,函数 的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中).
(Ⅰ)求函数的极值;
(Ⅱ)若函数在区间内有两个零点,求正实数a的取值范围;(Ⅲ)求证:当时,.(说明:e是自然对数的底数,e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数表示导函数。
(1)求函数的单调递增区间;
(2)当为奇数时,设,数列的前项和为,证明不等式对一切正整数均成立,并比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数
(1)若函数在区间内是减函数,求实数的取值范围;
(2)求函数在区间上的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于在区间上有意义的两个函数,如果对于任意的,都有则称在区间上是“接近的”两个函数,否则称它们在区间上是“非接近的”两个函数。现有两个函数给定一个区间
(1)若在区间有意义,求实数的取值范围;
(2)讨论在区间上是否是“接近的”。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)="|2x-1|+|2x-3|" , x∈R.
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)当时,求函数的极值;
(Ⅱ)当时,讨论函数的单调性.
(Ⅲ)若对任意及任意,恒有 成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数且是减函数,若,求实数的取值范围。

查看答案和解析>>

同步练习册答案