精英家教网 > 高中数学 > 题目详情
14.双曲线x2-y2=1的离心率为$\sqrt{2}$.

分析 根据题意,由双曲线的方程分析可得a=1,b=1,结合双曲线的几何性质可得c的值,进而由离心率计算公式计算可得答案.

解答 解:根据题意,双曲线的方程为x2-y2=1,变形可得$\frac{{x}^{2}}{1}$-$\frac{{y}^{2}}{1}$=1,
则a=1,b=1,
则有c=$\sqrt{1+1}$=$\sqrt{2}$,
则其离心率e=$\frac{c}{a}$=$\sqrt{2}$,
故答案为:$\sqrt{2}$.

点评 本题考查双曲线的几何性质,要从双曲线的标准方程分析得到a、b的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).
(1)若l1与圆C相切,求l1的方程;
(2)若l1的倾斜角为$\frac{π}{4}$,l1与圆C相交于P、Q两点,求线段PQ的中点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,游乐场中的摩天轮匀速逆时针旋转,每转一圈需要6min,其中心O距离地面40.5m,摩天轮的半径为40m,已知摩天轮上点P的起始位置在最低点处,在时刻t(min)时点P距离地面的高度为f(t)=Asin(ωt+φ)+h(A>0,ω>0,-π<φ<0,t≥0).
(Ⅰ)求f(t)的单调减区间;
(Ⅱ)求证:f(t)+f(t+2)+f(t+4)是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在六面体ABCD-A1B1C1D1中,M,N分别是棱A1B1,B1C1的中点,平面ABCD⊥平面A1B1BA,平面ABCD平面B1BCC1
(1)证明:BB1⊥平面ABCD;
(2)已知六面体ABCD-A1B1C1D1的棱长均为$\sqrt{5}$,cos∠BAD=$\frac{3}{5}$,设平面BMN与平面AB1D1相交所成二面角的大小为θ求cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知椭圆C经过点(1,0),(0,2),则椭圆C的标准方程为(  )
A.x2+$\frac{y^2}{2}$=1B.$\frac{x^2}{2}$+y2=1C.x2+$\frac{y^2}{4}$=1D.$\frac{x^2}{4}$+y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线y2=2px(p>0)上一点M(1,y)到焦点F的距离为$\frac{17}{16}$.
(1)求p的值;
(2)若圆(x-a)2+y2=1与抛物线C有四个不同的公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.给出下列命题:
①若数列{an}为等差数列,Sn为其前n项和,则Sn,S2n-Sn,S3n-S2n是等差数列;
②若数列{an}为等比数列,Sn为其前n项和,则Sn,S2n-Sn,S3n-S2n是等比数列;
③若数列{an},{bn}均为等差数列,则数列{an+bn}为等差数列;
④若数列{an},{bn}均为等比数列,则数列{an•bn}为等比数列
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,且$\overrightarrow{b}$⊥(2$\overrightarrow{a}$+$\overrightarrow{b}$),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,面积为10的矩形中有一封闭曲线围成的阴影区域,在矩形中随机撒一粒种子,它落在阴影区域内的概率为$\frac{3}{5}$,则阴影区域的面积为6.

查看答案和解析>>

同步练习册答案