精英家教网 > 高中数学 > 题目详情
定义在R上的函数y=f(x)既是奇函数又是周期函数,若函数y=f(x)的最小正周期是2,且当x∈(0,1)时,f(x)=(1-x),则f(x)在区间(1,2)上是( )
A.增函数且f(x)>0
B.增函数且f(x)<0
C.减函数且f(x)>0
D.减函数且f(x)<0
【答案】分析:用变量代换的方法求得:x∈(-1,0)时,f(x)=.根据基本初等函数的单调性与对数的运算性质,得到
f(x)在区间(-1,0)上的单调性、值域,再根据f(x)的最小正周期是2,即可得到f(x)在区间(1,2)的情况.
解答:解:当x∈(-1,0)时,可得f(-x)==
∵f(x)是定义在R上的奇函数,∴当x∈(-1,0)时,f(-x)=-f(x)=,可得f(x)=-1=
又∵f(x)的最小正周期是2,
∴f(x)在区间(1,2)的单调性、值域与f(x)在区间(-1,0)上的单调性、值域相同
∵t=在区间(-1,0)上是减函数,得t=<1
∴结合0,可得>0,且f(x)在区间(1,2)是增函数
故选:B
点评:本题给出含有周期的基本初等函数,在已知它在(0,1)上的表达式的情况下求它在区间(1,2)的单调性和值域.着重考查了函数奇偶性与单调性的综合、函数的周期性等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、定义在R上的函数y=f(x)满足f(-x)=-f(x),f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x3,则f(2009)的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

13、定义在R上的函数y=f(x)满足:f(x)=f(4-x),且f(x-2)+f(2-x)=0,则f(508)=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)满足f(3-x)=f(x),(x-
3
2
)f′(x)>0(x≠
3
2
)
,若x1<x2,且x1+x2>3,则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:
①“a>b”是“2a>2b”成立的充要条件;
②“a=b”是“lga=lgb”成立的充分不必要条件;
③函数f(x)=ax2+bx(x∈R)为奇函数的充要条件是“a=0”
④定义在R上的函数y=f(x)是偶函数的必要条件是
f(-x)f(x)
=1”

其中真命题的序号是
①③
①③
.(把真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)满足f(-x)=-f(x),f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x3,则f(2011)=
-1
-1

查看答案和解析>>

同步练习册答案