精英家教网 > 高中数学 > 题目详情
14.已知曲线C的极坐标方程为ρ=4cosθ,以极点为平面直角坐标系的原点,轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t是参数)
(I)将曲线C的极坐标方程和直线1的参数方程化为普通方程;
(Ⅱ)若直线l与曲线C相交于A、B两点,点P(m,0),若|PA|•|PB|=5,求实数m的值.

分析 (I)曲线C的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$,即可化为直角坐标方程,对于直线l的参数方程消去参数t即可化为普通方程;
(II)把直线l的参数方程$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t是参数),代入圆C的方程可得:t2+$\sqrt{3}(m-2)t$+m2-4m=0,利用|PA|•|PB|=|t1t2|,即可得出.

解答 解:(I)曲线C的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,化为x2+y2=4x.
直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t是参数),消去t化为:x-$\sqrt{3}y$-m=0.
(II)把直线l的参数方程$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t是参数),代入圆C的方程可得:t2+$\sqrt{3}(m-2)t$+m2-4m=0,
∴t1t2=m2-4m,
∴|PA|•|PB|=5=|t1t2|=|m2-4m|,
解得m=5或-1.

点评 本题考查了极坐标化为直角坐标的方法、圆的标准方程、直线参数方程的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=cos2x+asinx(a∈R),
(Ⅰ)若a=6,求f(x)的最大值及此时x的值;
(Ⅱ)若函数f(x)在区间[$\frac{π}{6}$,$\frac{π}{2}$]上的最小值为4,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在极坐标系中,已知圆C经过点P($\sqrt{2}$,$\frac{π}{4}$),圆心为直线$ρsin(θ-\frac{π}{3})$=-$\frac{\sqrt{3}}{2}$与极轴的交点,求圆C的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.$\overrightarrow{AB}$+$\overrightarrow{AC}$+$\overrightarrow{CB}$-$\overrightarrow{BA}$=3$\overrightarrow{AB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=log2(2|x+1|+|2x+m|-m)
(I)当m=6时,求函数f(x)的定义域;
(Ⅱ)当函数f(x)的值域为R时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,圆锥SO的内接圆柱OO′的上底面经过高SO的中点O′,下底面在圆锥SO的底面上,设圆柱OO′的体积为V1,圆锥SO的体积为V2,则$\frac{{V}_{1}}{{V}_{2}}$=$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$=(sinθ,cosθ),$\overrightarrow{b}$=(3,-4),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则tan2θ=±$\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某食品的保鲜时间t(单位:小时)与储藏温度x(单位:℃)满足函数关系t=$\left\{\begin{array}{l}{64,x≤0}\\{{2}^{kx+6},x>0}\end{array}\right.$且该食品在4℃的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示,给出以下四个结论:
①该食品在6℃的保鲜时间是8小时;
②当x∈[-6,6]时,该食品的保鲜时间t随看x增大而逐渐减少;
③到了此日13时,甲所购买的食品还在保鲜时间内;
④到了此日14时,甲所购买的食品已然过了保鲜时间
其中,所有正确结论的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若${∫}_{0}^{k}$e3xdx=$\frac{1}{3}$,则正数k=$\frac{1}{3}$ln2.

查看答案和解析>>

同步练习册答案