精英家教网 > 高中数学 > 题目详情
(本题满分14分)某突发事件,在不采取任何预防措施的情况下发生的概率为,一旦发生,将造成某公司300万元的损失.现有甲、乙两种相互独立的预防措施可供选择,单独采用甲、乙预防措施所需的费用分别为40万元和20万元,采用相应预防措施后此突发事件不发生的概率分别为.若预防方案允许甲、乙两种预防措施单独采用、同时采用或都不采用,请分别计算这几种预防方案的总费用,并指出哪一种预防方案总费用最少.
(注:总费用 = 采取预防措施的费用+发生突发事件损失的期望值)
(1)不采取预防措施时,总费用即损失期望值为 (万元) .           …………2分
(2)若单独采取预防措施甲,则预防措施费用为万元,发生突发事件的概率为,损失期望值为 (万元),                                             …………4分
所以总费用为 (万元) .                                           …………5分
(3)若单独采用预防措施乙,则预防措施费用为万元,发生突发事件的概率为,损失期望值为 (万元),                                            …………7分
所以总费用为 (万元) .                                           …………8分
(4)若同时采用甲、乙两种预防措施,则预防措施费用为万元,发生突发事件的概率为,                                                  …………10分
损失期望值为(万元),                                          …………11分
所以总费用为 (万元).                                            …………12分
综合(1)(2)(3)(4),比较其总费用可知,同时采用甲、乙两种预防措施,总费用最少. 
…………14分
略       
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机抽取一个容量为8的样本进行分析.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本(只要求写出算式即可,不必计算出结果);
(2)随机抽取8位同学,数学分数依次为:60,65,70,75,80,85,90,95;
物理成绩依次为:72,77,80,84,88,90,93,95,
①若规定90分(含90分)以上为优秀,记为这8位同学中数学和物理分数均为优秀的人数,求的分布列和数学期望;
②若这8位同学的数学、物理分数事实上对应下表:
学生编号
1
2
3
4
5
6
7
8
数学分数
60
65
70
75
80
85
90
95
物理分数
72
77
80
84
88
90
93
95
 
根据上表数据可知,变量之间具有较强的线性相关关系,求出的线性回归方程(系数精确到0.01).(参考公式:,其中;参考数据:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某象棋教练用下列方式考核队员:任一名队员可以选择与一级棋士或二级棋士对奕,规定与一级棋士对奕取胜得3分,不胜得0分,与二级棋士对弈取胜得2分,不胜得0分,如果前两局得分超过3分即算考核合格,否则比赛三局.某位队员与一级棋士对弈获胜的概率为q1,与二级棋士对弈获胜的概率为0.6,该队员选择先与一级棋士对奕,以后都与二级棋士对奕,用X表示该队员考核结束后所得的总分,已知P(X=0)=0.128.
(1)求q1的值;
(2)写出随机变量X的分布列并求出数学期望EX;
(3)试比较该队员选择都与二级棋士对奕与上述方式最后得分大于3的概率的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两人同时参加奥运志愿者的选拔赛,已知在备选的10道题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.
(1)求甲答对试题数的分布列及数学期望;
(2)求甲、乙两人至少有一人入选的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某旅游公司为3个旅游团提供甲、乙、丙、丁4条旅游线路,每个旅游团从中任选一条。
(I)求3个旅游团选择3条不同的旅游线路的概率;
(II)求恰有2条旅游线路没有被选择的概率;
(III)求选择甲旅游线路的旅游团数的分布列及数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
甲、乙两人进行一场乒乓球比赛,根据以往比赛的胜负情况知道,每一局比赛甲胜的概率0.6,乙胜的概率为0.4,本场比赛采用三局两胜制。
(1)求甲获胜的概率.
(2)设ξ为本场比赛的局数,求ξ的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,试比较  的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛掷两枚骰子,当至少有一枚5点或一枚6点出现时,就说这次实验成功,则在30次实验中成功次数的期望是
A.B.C.D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某公司为庆祝元旦举办了一次抽奖活动,现场准备的抽奖箱里放置了分别标有数字1000、800、600、0的四个球(球的大小相同).参与者随机从抽奖箱里摸取一球(取后即放回),公司即赠送与此球上所标数字等额的奖金(元),并规定摸到标有数字0的球时可以再摸一次,但是所得奖金减半(若再摸到标有数字0的球就没有第三次摸球机会),求一个参与抽奖活动的人可得奖金的期望值是多少元.

查看答案和解析>>

同步练习册答案