精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=x+$\frac{1}{x}$,x∈(1,+∞).
(1)证明f(x)为增函数
(2)若f(3x)>f(x+1),求x的取值范围.

分析 (1)根据函数单调性的定义证明函数在(1,+∞)上是增函数即可;
(2)根据函数f(x)的单调性求出关于x的不等式组,解出即可.

解答 (1)证明:设x1、x2∈(1,+∞),且x1<x2,得
f(x1)-f(x2)=(x1+$\frac{1}{{x}_{1}}$)-(x2+$\frac{1}{{x}_{2}}$)
=(x1-x2)+($\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$)=(x1-x2)(1-$\frac{1}{{{x}_{1}x}_{2}}$)
∵x1>1,x2>1
∴x1x2>1,得$\frac{1}{{{x}_{1}x}_{2}}$∈(0,1),1-$\frac{1}{{{x}_{1}x}_{2}}$>0
又∵x1<x2,得x1-x2<0
∴(x1-x2)(1-$\frac{1}{{{x}_{1}x}_{2}}$)<0,可得f(x1)-f(x2)<0,即f(x1)<f(x2
综上所述,可得:函数f(x)=x+$\frac{1}{x}$在(1,+∞)上是增函数;
(2)若f(3x)>f(x+1),
由f(x)在(1,+∞)递增,
则$\left\{\begin{array}{l}{3x>1}\\{x+1>1}\\{3x>x+1}\end{array}\right.$,解得:x>$\frac{1}{2}$.

点评 本题给出函数f(x)=x+$\frac{1}{x}$,要求我们用单调性的定义证明函数在(1,+∞)上是增函数.着重考查了用定义证明函数的单调性的一般方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,B=$\frac{π}{3}$,sinA+$\sqrt{3}$cosA=2,则b=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知等比数列{an}的前n项和为Sn,公比q=$\frac{1}{2}$,a8=1,则S8=255.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a>0,x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{y≥a(x-4)}\end{array}\right.$,若z=2x+y的最小值是-1,则a=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)求定积分${∫}_{-2}^{1}$|x2-2|dx的值;
(2)若复数z1=a+2i(a∈R),z2=3-4i,且$\frac{{z}_{1}}{{z}_{2}}$为纯虚数,求|z1|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知tan(π-x)=2,
(1)求$\frac{sinx+cosx}{sinx-cosx}$的值;    
(2)求sin2x+sinxcosx-cos2x-2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若椭圆$\frac{x^2}{{{m^2}+1}}+{y^2}=1$的离心率为$\frac{{\sqrt{3}}}{2}$,则它的长半轴长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}前n项和为Sn,Sn=n2+n+5,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号).若假设第1组抽出的号码为3,则第5组中用抽签方法确定的号码是(  )
A.33B.34C.35D.36

查看答案和解析>>

同步练习册答案