精英家教网 > 高中数学 > 题目详情

【题目】记数列的前n项和为,已知.

1)求数列的通项公式;

2)设,记数列的前n项和为,求证:.

【答案】12)证明见解析;

【解析】

1)当时根据公式,代入进行计算并加以转化可得,方法一:利用累乘法,可得,即可求出结果;方法二:由,可得,所以数列 是一个常数列,进而可计算出数列的通项公式;

2)根据第(1)题的结果计算出数列的通项公式,然后将通项公式进行转化可发现数列是以2为首项,2为公比的等比数列,再根据等比数列的求和公式写出的表达式,同时可得的表达式,然后运用作差法代入计算可证明不等式成立.

解:(1)(法一)

,即

.

,即

也满足上式,

.

(法二)∵,即

,即

是以为首项的常数列,

.

(2)由(1)知

.

,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

)当时,判断函数的零点个数;

)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F为抛物线的焦点,过点F的直线交抛物线于AB两点,其中Ax轴上方,O是坐标原点,若,则以AB为直径的圆的标准方程为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在日常生活中,石子是我们经常见到的材料,比如在各种建筑工地或者建材市场上常常能看到堆积如山的石子,它的主要成分是碳酸钙.某雕刻师计划在底面边长为2m、高为4m的正四棱柱形的石料中,雕出一个四棱锥和球M的组合体,其中O为正四棱柱的中心,当球的半径r取最大值时,该雕刻师需去除的石料约重___________kg.(最后结果保留整数,其中,石料的密度,质量

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】7个球,其中红色球2个(同色不加区分),白色,黄色,蓝色,紫色,灰色球各1个,将它们排成一行,要求最左边不排白色,2个红色排一起,黄色和红色不相邻,则有________种不同的排法(用数字回答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l过点且倾斜角为.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为lC交于MN两点.

1)求C的直角坐标方程和的取值范围;

2)求MN中点H的轨迹的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天上有些恒星的亮度是会变化的,其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化.第一颗被描述的经典造父变星是在1784.

上图为一造父变星的亮度随时间的周期变化图,其中视星等的数值越小,亮度越高,则此变星亮度变化的周期、最亮时视星等,分别约是(

A.5.53.7B.5.44.4C.6.53.7D.5.54.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知椭圆E经过点,对称轴为坐标轴,焦点x轴上,离心率e.直线l的平分线,则椭圆E的方程是_____l所在的直线方程是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,将曲线方程,先向左平移2个单位,再向上平移2个单位,得到曲线C.

1)点Mxy)为曲线C上任意一点,写出曲线C的参数方程,并求出的最大值;

2)设直线l的参数方程为,(t为参数),又直线l与曲线C的交点为EF,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段EF的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

同步练习册答案