精英家教网 > 高中数学 > 题目详情
16.设Sn为数列{an}的前n项和,若Sn=5an-1,则an=$\frac{1}{4}×(\frac{5}{4})^{n-1}$.

分析 由已知的数列递推式求出首项,再由数列递推式得到数列{an}是以$\frac{1}{4}$为首项,以$\frac{5}{4}$为公比的等比数列.则an可求.

解答 解:由Sn=5an-1,取n=1,得a1=5a1-1,∴${a}_{1}=\frac{1}{4}$;
当n≥2时,an=Sn-Sn-1=5an-1-5an-1+1,
∴4an=5an-1,即$\frac{{a}_{n}}{{a}_{n-1}}=\frac{5}{4}$(n≥2).
则数列{an}是以$\frac{1}{4}$为首项,以$\frac{5}{4}$为公比的等比数列.
∴${a}_{n}=\frac{1}{4}×(\frac{5}{4})^{n-1}$.
故答案为:$\frac{1}{4}×(\frac{5}{4})^{n-1}$.

点评 本题考查了递推关系的应用、等比数列的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=mx-cosx,g(x)=(ax-1)cosx-sinx(a>0).
(1)若函数y=f(x)在(-∞,+∞)上是单调递增函数,求实数m的最小值;
(2)若m=1,且对于任意x∈[0,$\frac{π}{2}$],都有不等式f(x)≥g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示,三视图表示的几何体是(  )
A.圆台B.棱台C.棱柱D.圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是函数f(x)=Acos($\frac{2}{3}$πx+φ)-1(A>0,|φ|<$\frac{π}{2}$)的图象的一部分,则f(2015)=(  )
A.1B.2C.$\frac{{\sqrt{3}}}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xoy中,已知向量$\overrightarrow{a}$=($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),$\overrightarrow{b}$=(cosx,sinx),$x∈({-\frac{π}{2},\frac{π}{2}})$.
(I)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求tanx的值;
(II)若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设集合A{x|x∈N},且1≤x≤26,B={a,b,c,…,z},对应关系f:A→B如表(即1到26按由小到大顺序排列的自然数与按照字母表顺序排列的26个英文小写字母之间的一一对应):
x123452526
f(x)abcdeyz
又知函数g(x)=$\left\{\begin{array}{l}{lo{g}_{2}(32-x)(22<x<32)}\\{x+4(0≤x≤22)}\end{array}\right.$,若f[g(x1)],f[g(20)],f[g(x2)],f[g(9)]所表示的字母依次排列恰好组成的英文单词为“exam”,则x1+x2=31.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合M={-2,-1,0,1},N={x|$\frac{1}{2}$≤2x≤4},x∈Z},则M∩N=(  )
A.M={-2,-1,0,1,2}B.M={-1,0,1,2}C.M={-1,0,1}D.M={0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,内角A,B,C的对边分别为a,b,c,向量$\overrightarrow m=(cos(A-B),sin(A-B))$,$\overrightarrow n=(cosB,-sinB)$,且$\overrightarrow m•\overrightarrow n=-\frac{3}{5}$.
(Ⅰ)求sinA的值;
(Ⅱ)若$a=4\sqrt{2},b=5$,求$\overrightarrow{AB}•\overrightarrow{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\overrightarrow{AB}$、$\overrightarrow{AC}$是非零向量且满足($\overrightarrow{AB}-$2$\overrightarrow{AC}$)⊥$\overrightarrow{AB}$,($\overrightarrow{AC}$-2$\overrightarrow{AB}$)$⊥\overrightarrow{AC}$,则∠A等于(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

同步练习册答案