精英家教网 > 高中数学 > 题目详情

若偶函数f(x)在区间(-∞,-1]上是增函数,则(   )

A.f(-)<f(-1)<f(2)  B.f(-1)<f(-)<f(2)  C.f(2)<f(-1)<f(-)  D.f(2)<f(-)<f(-1)

 

【答案】

D

【解析】因为函数为偶函数,并且在区间(-∞,-1]上是增函数,因此在对称区间上单调递减,故可知f(2)<f(-)=f()<f(-1)=f(1),选D.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•黄埔区一模)若f(x)是R上的奇函数,且f(x)在[0,+∞)上单调递增,则下列结论:
①y=|f(x)|是偶函数;
②对任意的x∈R都有f(-x)+|f(x)|=0;
③y=f(-x)在(-∞,0]上单调递增;
④y=f(x)f(-x)在(-∞,0]上单调递增.
其中正确结论的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宝坻区一模)下列命题:
(1)若f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,θ∈(
π
4
π
2
)
,则f(sinθ)>f(cosθ);
(2)若锐角α,β满足cosα>sinβ,则α+β<
π
2

(3)若f(x)=sin2xcos2x,则f(x)的最小正周期为
π
2

(4)要得到函数y=cos(
x
2
-
π
4
)的图象只需将y=sin
x
2
的图象向左平移
π
4
个单位.
其中正确命题的个数有
2
2
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青浦区一模)我们把定义在R上,且满足f(x+T)=af(x)(其中常数a,T满足a≠1,a≠0,T≠0)的函数叫做似周期函数.
(1)若某个似周期函数y=f(x)满足T=1且图象关于直线x=1对称.求证:函数f(x)是偶函数;
(2)当T=1,a=2时,某个似周期函数在0≤x<1时的解析式为f(x)=x(1-x),求函数y=f(x),x∈[n,n+1),n∈Z的解析式;
(3)对于确定的T>0且0<x≤T时,f(x)=3x,试研究似周期函数函数y=f(x)在区间(0,+∞)上是否可能是单调函数?若可能,求出a的取值范围;若不可能,请说明理由.

查看答案和解析>>

同步练习册答案