精英家教网 > 高中数学 > 题目详情

【题目】在一次高三年级统一考试中,数学试卷有一道满分10分的选做题,学生可以从两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001一900.

(1)若采用随机数表法抽样,并按照以下随机数表,以方框内的数字5为起点,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端.写出样本编号的中位数;

(2)若采用系统抽样法抽样,且样本中最小编号为08,求样本中所有编号之和:

(3)若采用分层轴样,按照学生选择题目或题目,将成绩分为两层,且样本中题目的成绩有8个,平均数为7,方差为4:样本中题目的成绩有2个,平均数为8,方差为1.用样本估计900名考生选做题得分的平均数与方差.

【答案】(1)667(2)4130(3)平均数为7.2,方差为3.56

【解析】

(1)由题取出十个编号,先将编号从小到大排列再求中位数

(2)按照系统抽样法,抽出的编号可组成以8为首项,以90为公差的等差数列,求该数列的前10项和。

(3)分别求出样本的平均数和方差,900名考生选做题得分的平均数与方差和样本的平均数与方差相等。

解:(1)根据题意,读出的编号依次是:

512,916(超界),935(超界),805,770,951(超界),512(重复),687,858,554,876,647,547,332.

将有效的编号从小到大排列,得

332,512,547,554,647,687,770,805,858,876,

故中位数为.

(2)由题易知,按照系统抽样法,抽出的编号可组成以8为首项,以90为公差的等差数列,故样本编号之和即为该数列的前10项之和.

(3)记样本中8个题目成绩分别为,…,2个题目成绩分别为

由题意可知

故样本平均数为.

样本方差为

.

故估计该校900名考生该选做题得分的平均数为7.2,方差为3.56.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱柱中,平面.

(1)证明:.

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知点是抛物线上一定点,直线的倾斜角互补,且与抛物线另交于两个不同的点.

(1)求点到其准线的距离;

(2)求证:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应低碳绿色出行,某市推出“新能源分时租赁汽车”,其中一款新能源分时租赁汽车,每次租车收费得标准由以下两部分组成:(1)根据行驶里程数按1元/公里计费;(2)当租车时间不超过40分钟时,按0.12元/分钟计费;当租车时间超过40分钟时,超出的部分按0.20元/分钟计费;(3)租车时间不足1分钟,按1分钟计算.已知张先生从家里到公司的距离为15公里,每天租用该款汽车上下班各一次,且每次租车时间t20,60(单位:分钟).由于堵车,红绿灯等因素,每次路上租车时间t是一个随即变量.现统计了他50次路上租车时间,整理后得到下表:

租车时间t(分钟)

[20,30]

(30,40]

(40,50]

(50,60]

频数

2

18

20

10

将上述租车时间的频率视为概率.

(1)写出张先生一次租车费用y(元)与租车时间t(分钟)的函数关系式;

(2)公司规定,员工上下班可以免费乘坐公司接送车,若不乘坐公司接送车的每月(按22天计算)给800元车补.从经济收入的角度分析,张先生上下班应该选择公司接送车,还是租用该款新能源汽车?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在其图象上存在不同的两点,其坐标满足条件: 的最大值为0,则称为“柯西函数”,则下列函数:① :②:③:④.

其中为“柯西函数”的个数为( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数).

1)讨论函数的单调性;

(2)当时,设的两个极值点,()恰为的零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的空间几何体中,平面平面都是边长为2的等边三角形,与平面所成的角为60°,且点在平面上的射影落在的平分线上.

(1)求证:平面

(2)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解居民消费情况,某地区调查了10000户小家庭的日常生活平均月消费金额,根据所得数据绘制了样本频率分布直方图,如图所示,每户小家庭的平均月消费金额均不超过9千元,其中第六组第七组第八组尚未绘制完成,但是已知这三组的频率依次成等差数列,且第六组户数比第七组多500户,

(1)求第六组第七组第八组的户数,并补画图中所缺三组的直方图;

(2)若定义月消费在3千元以下的小家庭为4类家庭,定义月消费在3千元至6千无的小家庭为B类家庭,定义月消费6千元以上的小家庭为C类家庭,现从这10000户家庭中按分层抽样的方法抽取80户家庭召开座谈会,间ABC各层抽取的户数分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线.

(Ⅰ)求曲线C的方程;

(Ⅱ)设Q为曲线C上的一个不在轴上的动点,O为坐标原点,过点OQ的平行线交曲线CM,N两个不同的点, 求△QMN面积的最大值.

查看答案和解析>>

同步练习册答案