精英家教网 > 高中数学 > 题目详情
一个几何体的三视图如图所示,则该几何体的体积为
 

考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由已知中的三视图可得,该几何体是一个以俯视图为底面的四棱锥,分别计算棱锥的底面面积和高,代入棱锥体积公式,可得答案.
解答: 解:由已知中的三视图可得,该几何体是一个以俯视图为底面的四棱锥,
棱锥的底面面积S=8×8=64,
棱锥的高h=
52-(
8
2
)2
=3,
故几何体的体积V=
1
3
Sh
=64,
故答案为:64
点评:本题考查了由三视图求几何体的表面积和体积,根据三视图判断几何体的形状及数据所对应的几何量是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x+1)的图象关于点(-1,0)对称,且当x∈(-∞,0)时.f(x)+xf′(x)<0成立(其中f(x)是f(x)的导函数),若a=(
3
0.3
 
)•f(
3
0.3
 
),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
)
,则a,b,c从大到小的次序为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
21
+5)sinθ-7cosθ=2-
21
,求sinθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为奇函数,且在(-∞,0)内是增函数,又f(-2)=0,则f(x)<0的解集为(  )
A、(-2,0)∪(0,2)
B、(-∞,-2)∪(0,2)
C、(-∞,-2)∪(2,+∞)
D、(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是某同学求50个奇数3,5,7,…,101的平均数而设计的程序框图的部分内容,则在该程序框图中的空白判断框和处理框中应填入的内容依次是(  )
A、i>100,x=
x
50
B、i≥100,x=
x
100
C、i<100,x=
x
50
D、i≤100,x=
x
100

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某个几何体的三视图如图,则该几何体的体积为(  )
A、π+4
B、
π+4
3
C、
2π+4
3
D、π+
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,多面体ABCDEF中,四边形ABCD是边长为2a的正方形,平面ADEF垂直于平面ABCD,且FA⊥AD,EF∥AD,EF=AF=a.
(1)求证:BD⊥CF;
(2)若P、Q分别为棱BF和DE的中点,求证:PQ∥平面ABCD;
(3)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2-1>0},B={x|x>1},则A∩B等于(  )
A、{x|x>1}
B、{x|x>0}
C、{x|x<-1}
D、{x|x>1或x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四下命题:
①命题“若x2>1,则x>1”的否命题为“若x2≤1,则x≤1”;
②命题“若α>β,则tanα>tanβ”的逆命题为真命题;
③命题“?x∈R,使得x2+x+1<0”的否定是“?x∈R都有x2+x+1≥0”;
④“x>1”是“x2+x-2>0”的充分不必要条件
其中正确命题的序号是
 

查看答案和解析>>

同步练习册答案