精英家教网 > 高中数学 > 题目详情
16.已知条件p:x>1,q:$\frac{1}{x}$<1,则¬p是¬q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据充分条件和必要条件的定义进行判断即可.

解答 解:由$\frac{1}{x}$<1得x<0或x>1,
则q是p的必要不充分条件,
即¬p是¬q成立必要不充分条件,
故选:B

点评 本题主要考查充分条件和必要条件的判断,根据不等式之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若等差数列{an}中,a2+a8=10,则a3+a7=(  )
A.11B.10C.8D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是(  )
A.(-∞,-3)∪(0,3)B.(-∞,-3)∪(3,+∞)C.(-3,0)∪(3,+∞)D.(-3,0)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(x-$\frac{2}{x}$)8的二项展开式中,常数项为1120.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=ax2-x+c(x∈R)的值域为[0,+∞),则$\frac{1}{a}+\frac{2}{c}$的最小值为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在下列四个函数中,在(0,+∞)为增函数的是(  )
A.y=3-xB.y=x2-3xC.$f(x)={(\frac{1}{2})^x}$D.f(x)=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某单位有工程师20人,技术员100人,工人280人,要从这些人中用分层抽样法抽取一个容量为20的样本,其中技术员应该抽取5人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x(x2-ax+3).
(Ⅰ)若x=$\frac{1}{3}$是f(x)的极值点,求f(x)在区间[-1,4]上的最大值与最小值;
(Ⅱ)若f(x)在[1,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)的定义域为[-1,5],f(x)的导函数f′(x)的图象如图所示.若f(x)在区间[m,m+1]上是单调函数,则实数m的取值范围是{m|m=-1或0≤m≤1或2≤m≤3或m=4}.

查看答案和解析>>

同步练习册答案