精英家教网 > 高中数学 > 题目详情
(13分) 如图,已知椭圆的两个焦点分别为,斜率为k的直线l过左焦点F1且与椭圆的交点为A,B与y轴交点为C,又B为线段CF1的中点,若,求椭圆离心率e的取值范围。

试题分析:设,则,因为B在椭圆上
所以,即
,所以

点评:求离心率范围,结合已知条件斜率k有一定的范围,因此要找到离心率与k的关系,通过k的范围找到离心率范围,本题难度不大
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,的两个顶点的坐标分别是(-1,0),(1,0),点的重心,轴上一点满足,且.
(1)求的顶点的轨迹的方程;
(2)不过点的直线与轨迹交于不同的两点,当时,求的关系,并证明直线过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆的离心率为,短轴一个端点到右焦点的距离为.
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,坐标原点到直线的距离为,求
面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的右焦点为点在椭圆上,以点为圆心的圆与轴相切,且同时与轴相切于椭圆的右焦点,则椭圆的离心率为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线的左焦点作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为A、B,若,则双曲线的渐近线方程为(  )
A.                 B.
C.                D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在平面直角坐标系中,为椭圆的四个顶点,F为其右焦点,直线与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
抛物线的焦点与双曲线的右焦点重合.
(Ⅰ)求抛物线的方程;
(Ⅱ)求抛物线的准线与双曲线的渐近线围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线的实轴长、虚轴长与焦距的和为8,则半焦距的取值范围是        (答案用区间表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求下列各曲线的标准方程
(Ⅰ)实轴长为12,离心率为,焦点在x轴上的椭圆;
(Ⅱ)抛物线的焦点是双曲线的左顶点.

查看答案和解析>>

同步练习册答案