精英家教网 > 高中数学 > 题目详情

【题目】如图是几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面4个结论:

直线BE与直线CF共面;②直线BE与直线AF异面

直线EF平面PBC;④平面BCE平面PAD.

其中正确的有(  )

A. 1个 B. 2个 C. 3个 D. 4个

【答案】B

【解析】画出几何体的图形,如图:

中,由题意可知,直线BE与直线CF异面,故不正确,

中,因为E,F是PA与PD的中点,可知EF∥AD,

所以EFBC,直线BE与直线CF是共面直线,直线BE与直线AF异面,故正确;

中,直线EF平面PBC;由E,F是PA与PD的中点,可知EFAD,所以EF∥BC,

因为EF平面PBC,BC平面PBC,所以直线EF平面PBC,故正确;

中,因为PAB是等腰三角形,BE与PA的关系不能确定,

所以平面BCE与平面PAD不一定垂直,故不正确.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,记A为此几何体所有棱的长度构成的集合,则(

A.3∈A
B.5∈A
C.2 ∈A
D.4 ∈A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在120°的二面角α--β的两个面内分别有点A,B,A∈α,B∈β,A,B到棱l的距离AC,BD分别是2,4,且线段AB=10.

(1)求C,D间的距离;

(2)求直线AB与平面β所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4﹣4:坐标系与参数方程)已知曲线C的参数方程是 (φ为参数,a>0),直线l的参数方程是 (t为参数),曲线C与直线l有一个公共点在x轴上,以坐标原点为极点,x轴的正半轴为极轴建立坐标系.
(1)求曲线C普通方程;
(2)若点 在曲线C上,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCD﹣A1B1C1D1中,AB=16BC=10AA1=8,点EF分别在A1B1D1C1上,A1E=D1F=4,过点EF的平面α与此长方体的面相交,交线围成一个正方形.

1)在图中画出这个正方形(不必说明画法和理由);

2)求直线AF与平面α所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2(ωx)﹣ (ω>0)的最小正周期为 ,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点P为椭圆C: =1(a>b>0)的下顶点,M,N在椭圆上,若四边形OPMN为平行四边形,α为直线ON的倾斜角,若α∈( ],则椭圆C的离心率的取值范围为( )
A.(0, ]
B.(0, ]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数fx= a>0a≠1.

(Ⅰ)求函数fx)的定义域;

(Ⅱ)判断函数fx)的奇偶性,并加以证明;

(Ⅲ)设a=,解不等式fx>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左右焦点分别为F1F2,离心率为,过点F1且垂直于x轴的直线被椭圆截得的弦长为,直线ly=kx+m与椭圆交于不同的AB两点.

(Ⅰ)求椭圆C的方程;

)若在椭圆C上存在点Q满足: O为坐标原点).求实数λ的取值范围.

查看答案和解析>>

同步练习册答案