A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
分析 根据线面平行和线面垂直的判定定理,以及面面垂直的判定定理和性质分别进行判断即可.
解答 解:①当E为棱CC1上的一中点时,此时F也为棱AAC1上的一个中点,此时A1C1∥EF;满足A1C1∥平面BED1F成立,∴①正确.
②∵B1D⊆平面BED1F,∴不可能存在点E,使得B1D⊥平面BED1F,∴②错误.
③连结D1B,则D1B⊥平面A1C1D,而B1D⊆平面BED1F,∴平面A1C1D⊥平面BED1F,成立,∴③正确.
④四棱锥B1-BED1F的体积等于VD1-BB1F+VD1-B1BF,
设正方体的棱长为1,
∵无论E,F在何点,三角形BB1E的面积为$\frac{1}{2}$×1×1=$\frac{1}{2}$为定值,三棱锥D1-BB1E的高D1C1=1,保持不变.
三角形BB1F的面积为$\frac{1}{2}$×1×1=$\frac{1}{2}$为定值,三棱锥D1-BB1F的高为D1A1=1,保持不变.
∴三棱锥D1-BB1E和三棱锥D1-BB1F体积为定值,
即四棱锥B1-BED1F的体积等于VD1-BB1F+VD1-B1BF为定值,∴④正确.
故正确的命题有:①③④共3个,
故选:D
点评 本题主要考查空间直线和平面平行或垂直的位置关系的判断以及利用分割法求空间几何体的体积的方法,综合性较强,难度较大
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{12}{13}$ | B. | $\frac{5}{13}$ | C. | -$\frac{5}{13}$ | D. | -$\frac{12}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{2}$ | B. | 3 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{15}}{3}$πm3 | B. | $\frac{32\sqrt{35}}{27}$πm3 | C. | $\frac{32\sqrt{35}}{81}$πm3 | D. | $\frac{128\sqrt{2}}{81}$πm3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com