精英家教网 > 高中数学 > 题目详情

【题目】[选项4-4:坐标系与参数方程]
在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.
(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(2)直线l的参数方程是 (t为参数),l与C交与A,B两点,|AB|= ,求l的斜率.

【答案】
(1)

解:∵圆C的方程为(x+6)2+y2=25,

∴x2+y2+12x+11=0,

∵ρ2=x2+y2,x=ρcosα,y=ρsinα,

∴C的极坐标方程为ρ2+12ρcosα+11=0


(2)

∵直线l的参数方程是 (t为参数),

∴直线l的一般方程y=tanαx,

∵l与C交与A,B两点,|AB|= ,圆C的圆心C(﹣6,0),半径r=5,

∴圆心C(﹣6,0)到直线距离d= =

解得tan2α= ,∴tanα=±

∴l的斜率k=±


【解析】(1)把圆C的标准方程化为一般方程,由此利用ρ2=x2+y2 , x=ρcosα,y=ρsinα,能求出圆C的极坐标方程.(2)由直线l的参数方程求出直线l的一般方程,再求出圆心到直线距离,由此能求出直线l的斜率.;本题考查圆的极坐标方程的求法,考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线公式、圆的性质的合理运用.
【考点精析】本题主要考查了圆的标准方程的相关知识点,需要掌握圆的标准方程:;圆心为A(a,b),半径为r的圆的方程才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】双十一已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年双十一的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额(百元)的频率分布直方图如图所示:

1)求网民消费金额的平均值和中位数

(2)把下表中空格里的数填上,能否有90%的把握认为网购消费与性别有关;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[1,2]上是减函数,若α,β是锐角三角形的两个内角,则(  )

A. f B. f

C. f D. f

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.

(1)根据茎叶图中的数据完成列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?

购买意愿强

购买意愿弱

合计

20~40岁

大于40岁

合计

(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,求这2人都是年龄大于40岁的概率.

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】借助计算机(器)作某些分段函数图象时,分段函数的表示有时可以利用函数,例如要表示分段函数g(x)=总可以将g(x)表示为g(x)=xh(x-2)+(-x)h(2-x).

(1)设f(x)=(x2-2x+3)h(x-1)+(1-x2)h(1-x),请把函数f(x)写成分段函数的形式;

(2)已知G(x)=[(3a-1)x+4a]h(1-x)+logaxh(x-1)是R上的减函数,求a的取值范围;

(3)设F(x)=(x2+x-a+1)h(x-a)+(x2-x+a+1)h(a-x),求函数F(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图程序框图,如果输入的a=4,b=6,那么输出的n=(  )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面,四边形为矩形,四边形为直角梯形,ABCD

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线关于轴对称,顶点在坐标原点,直线经过抛物线的焦点.

(1)求抛物线的标准方程;

(2)若不经过坐标原点的直线与抛物线相交于不同的两点 ,且满足,证明直线轴上一定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得=80,=20,=184,=720.

(1)求家庭的月储蓄y对月收入x的线性回归方程x

(2)判断变量xy之间是正相关还是负相关;

(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

附:线性回归方程x中,b ,其中为样本平均值.

查看答案和解析>>

同步练习册答案