【题目】[选项4-4:坐标系与参数方程]
在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.
(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(2)直线l的参数方程是 (t为参数),l与C交与A,B两点,|AB|= ,求l的斜率.
【答案】
(1)
解:∵圆C的方程为(x+6)2+y2=25,
∴x2+y2+12x+11=0,
∵ρ2=x2+y2,x=ρcosα,y=ρsinα,
∴C的极坐标方程为ρ2+12ρcosα+11=0
(2)
∵直线l的参数方程是 (t为参数),
∴直线l的一般方程y=tanαx,
∵l与C交与A,B两点,|AB|= ,圆C的圆心C(﹣6,0),半径r=5,
∴圆心C(﹣6,0)到直线距离d= = ,
解得tan2α= ,∴tanα=± =± .
∴l的斜率k=±
【解析】(1)把圆C的标准方程化为一般方程,由此利用ρ2=x2+y2 , x=ρcosα,y=ρsinα,能求出圆C的极坐标方程.(2)由直线l的参数方程求出直线l的一般方程,再求出圆心到直线距离,由此能求出直线l的斜率.;本题考查圆的极坐标方程的求法,考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线公式、圆的性质的合理运用.
【考点精析】本题主要考查了圆的标准方程的相关知识点,需要掌握圆的标准方程:;圆心为A(a,b),半径为r的圆的方程才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额(百元)的频率分布直方图如图所示:
(1)求网民消费金额的平均值和中位数;
(2)把下表中空格里的数填上,能否有90%的把握认为网购消费与性别有关;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[1,2]上是减函数,若α,β是锐角三角形的两个内角,则( )
A. f B. f
C. f D. f
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.
(1)根据茎叶图中的数据完成列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?
购买意愿强 | 购买意愿弱 | 合计 | |
20~40岁 | |||
大于40岁 | |||
合计 |
(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,求这2人都是年龄大于40岁的概率.
附:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】借助计算机(器)作某些分段函数图象时,分段函数的表示有时可以利用函数,例如要表示分段函数g(x)=总可以将g(x)表示为g(x)=xh(x-2)+(-x)h(2-x).
(1)设f(x)=(x2-2x+3)h(x-1)+(1-x2)h(1-x),请把函数f(x)写成分段函数的形式;
(2)已知G(x)=[(3a-1)x+4a]h(1-x)+logaxh(x-1)是R上的减函数,求a的取值范围;
(3)设F(x)=(x2+x-a+1)h(x-a)+(x2-x+a+1)h(a-x),求函数F(x)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线关于轴对称,顶点在坐标原点,直线经过抛物线的焦点.
(1)求抛物线的标准方程;
(2)若不经过坐标原点的直线与抛物线相交于不同的两点, ,且满足,证明直线过轴上一定点,并求出点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得=80,=20,=184,=720.
(1)求家庭的月储蓄y对月收入x的线性回归方程=x+;
(2)判断变量x与y之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程=x+中,b=,=- ,其中,为样本平均值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com