【题目】函数f(x)=ln|x﹣1|+2cosπx(﹣2≤x≤4)的所有零点之和等于( )
A.2
B.4
C.6
D.8
【答案】C
【解析】解:f(x)=ln|x﹣1|+2cosπx的零点,即为函数f(x)=﹣2cosπx与函数g(x)=ln|x﹣1|的图象交点的横坐标,
由图象变化的法则可知:y=ln|x﹣1|的图象作关于y轴的对称后和原来的一起构成y=ln|x|的图象,在向右平移1个单位得到y=ln|x﹣1|的图象
又f(x)=﹣2cosπx的周期为2,如图所示:两图象都关于直线x=1对称,且共有A,B,C,D,E,F,6个交点,
由中点坐标公式可得:xA+xF=2,xB+xE=2,xC+xD=2,故所有交点的横坐标之和为6,
所以答案是:C.
【考点精析】本题主要考查了函数的图象的相关知识点,需要掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知f(x)=x3﹣6x2+9x﹣abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:
①f(0)f(1)>0;
②f(0)f(1)<0;
③f(0)f(3)>0;
④f(0)f(3)<0.
其中正确结论的序号是( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y= +lg(﹣x2+4x﹣3)的定义域为M,
(1)求M;
(2)当x∈M时,求函数f(x)=a2x+2+34x(a<﹣3)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(x+1)+ax2 , a>0.
(1)讨论函数f(x)的单调性;
(2)若函数f(x)在区间(﹣1,0)有唯一零点x0 , 证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为得到函数y=sin2x﹣cos2x的图象,可由函数y= sin2x的图象( )
A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=4sinωxsin(ωx+ )﹣1(ω>0),f(x)的最小正周期为π.
(Ⅰ)当x∈[0, ]时,求f(x)的最大值;
(Ⅱ)请用“五点作图法”画出f(x)在[0,π]上的图象.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合A={x|a﹣1<x<a+1},B={x|x<﹣1或x>2}.
(1)若A∩B=,求实数a的取值范围;
(2)若A∪B=B,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且n+1=1+Sn对一切正整数n恒成立.
(1)试求当a1为何值时,数列{an}是等比数列,并求出它的通项公式;
(2)在(1)的条件下,当n为何值时,数列 的前n项和Tn取得最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠CDA=∠BAD=90°,AD=DC= ,AB=PA=2 ,且E为线段PB上的一动点.
(1)若E为线段PB的中点,求证:CE∥平面PAD;
(2)当直线CE与平面PAC所成角小于 ,求PE长度的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com