精英家教网 > 高中数学 > 题目详情
如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的四个顶点为A1,A2,B1,B2,两焦点为F1,F2,若以F1F2为直径的圆内切于菱形A1B1A2B2,切点分别为A,B,C,D,则菱形A1B1A2B2的面积S1与矩形ABCD的面积S2的比值
S1
S2
=(  )
A.
5
+1
2
B.2
5
-2
C.
5
+2
2
D.
5
-1
2

菱形A1B1A2B2的面积S1=2ab,
设矩形ABCD,BC=2m,BA=2n,∴
m
n
=
a
b

∵m2+n2=c2,∴m=
ac
a2+b2
,n=
bc
a2+b2

∴面积S2=4mn=4•
abc2
a2+b2

S1
S2
=
a2+b2
2c2

c
a
=
b
a2+b2
,b2=a2-c2
∴a4-a2c2+c4=0
∴a4-3a2c2+c4=0
a2
c2
=
3+
5
2
b2
c2
=
1+
5
2

S1
S2
=
a2+b2
2c2
=
5
+2
4

故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

【理科】抛物线顶点在原点,焦点是圆x2+y2-4x=0的圆心.
(1)求抛物线的方程;
(2)直线l的斜率为2,且过抛物线的焦点,与抛物线交于A、B两点,求弦AB的长;
(3)过点P(1,1)引抛物线的一条弦,使它被点P平分,求这条弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线y2=2px(p>0),其准线方程为x=-1,过准线与x轴的交点M做直线l交抛物线于A、B两点.
(Ⅰ)若点A为MB中点,求直线l的方程;
(Ⅱ)设抛物线的焦点为F,当AF⊥BF时,求△ABF的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线y2=4x的焦点作倾斜角为
π
3
的直线与抛物线交于点A、B,则|AB|=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P在椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上,F1、F2分别为椭圆C的左、右焦点,满足|PF1|=6-|PF2|,且椭圆C的离心率为
5
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点Q(1,0)且不与x轴垂直的直线l与椭圆C相交于两个不同点M、N,在x轴上是否存在定点G,使得
GM
GN
为定值.若存在,求出所有满足这种条件的点G的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=它(a>b>0)的短轴长为2,离心率为
2
2

(它)求椭圆C的方程;
(2)若过点M(2,0)的引斜率为k的直线与椭圆C相交于两点G、H,设m为椭圆C上一点,且满足
OG
+
OH
=t
Om
(O为坐标原点),当|
mG
-
mH
|<
2
5
3
时,求实数t的取值范围?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=2px(p>0)的焦点为F,点K(-1,0)为直线l与抛物线C准线的交点.直线l与抛物线C相交于A,B两点,点A关于x轴的对称点为D.
(1)求抛物线C的方程;
(2)设
FA
FB
=
8
9
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法正确的是(  ) 
A.若两个角互补,则这两个角是邻补角;
B.若两个角相等,则这两个角是对顶角
C.若两个角是对顶角,则这两个角相等;
D.以上判断都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知AB为圆O的直径,AB=4,C为半圆上一点,过点C作圆O的切线CD,过点A作ADCD于D,交圆O于点E,DE=1,则BC的长为       

查看答案和解析>>

同步练习册答案